Abstract

Atom interferometry has become one of the most powerful technologies for precision measurements. To develop simple, precise, and versatile atom interferometers for inertial sensing, we demonstrate an atom interferometer measuring acceleration, rotation, and inclination by pointing Raman beams toward individual faces of a pyramidal mirror. Only a single-diode laser is used for all functions, including atom trapping, interferometry, and detection. Efficient Doppler-sensitive Raman transitions are achieved without velocity selecting the atom sample, and with zero differential AC Stark shift between the cesium hyperfine ground states, increasing signal-to-noise and suppressing systematic effects. We measure gravity along two axes (vertical and 45° to the vertical), rotation, and inclination with sensitivities of 6  μm/s2/Hz, 300  μrad/s/Hz, and 4  μrad/Hz, respectively. This work paves the way toward deployable multiaxis atom interferometers for geodesy, geology, or inertial navigation.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light pulse atom interferometry at short interrogation times

David L. Butts, Joseph M. Kinast, Brian P. Timmons, and Richard E. Stoner
J. Opt. Soc. Am. B 28(3) 416-421 (2011)

Generation of an intense cold-atom beam from a pyramidal magneto-optical trap: experiment and simulation

James M. Kohel, Jaime Ramirez-Serrano, Robert J. Thompson, Lute Maleki, Joshua L. Bliss, and Kenneth G. Libbrecht
J. Opt. Soc. Am. B 20(6) 1161-1168 (2003)

A magneto-optical trap loaded from a pyramidal funnel

R. S. Williamson III, P. A. Voytas, R. T. Newell, and T. Walker
Opt. Express 3(3) 111-117 (1998)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
    [Crossref]
  2. A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25–61 (2001).
    [Crossref]
  3. H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
    [Crossref]
  4. Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88, 043610 (2013).
    [Crossref]
  5. J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
    [Crossref]
  6. G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114, 013001 (2015).
    [Crossref]
  7. P. Asenbaum, C. Overstreet, T. Kovachy, D. D. Brown, J. M. Hogan, and M. Kasevich, “Phase shift in an atom interferometer due to spacetime curvature across its wave function,” Phys. Rev. Lett. 118, 183602 (2017).
    [Crossref]
  8. T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
    [Crossref]
  9. J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107, 133001 (2011).
    [Crossref]
  10. I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1  nrad/sec rotation stability,” Phys. Rev. Lett. 116, 183003 (2016).
    [Crossref]
  11. J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
    [Crossref]
  12. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
    [Crossref]
  13. S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339, 554–557 (2013).
    [Crossref]
  14. R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New determination of the fine structure constant and test of the quantum electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
    [Crossref]
  15. R. H. Parker, C. Yu, B. Estey, W. Zhong, E. Huang, and H. Müller, “Controlling the multiport nature of Bragg diffraction in atom interferometry,” Phys. Rev. A 94, 053618 (2016).
    [Crossref]
  16. L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
    [Crossref]
  17. J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
    [Crossref]
  18. X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
    [Crossref]
  19. P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, and J. Khoury, “Atom-interferometry constraints on dark energy,” Science 349, 849–851 (2015).
    [Crossref]
  20. M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nat. Phys. 13, 938–942 (2017).
    [Crossref]
  21. T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-meter scale,” Nature 528, 530–533 (2015).
    [Crossref]
  22. N. Yu and M. Tinto, “Gravitational wave detection with single-laser atom interferometers,” Gen. Relativ. Gravit. 43, 1943–1952 (2011).
    [Crossref]
  23. P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “New method for gravitational wave detection with atomic sensors,” Phys. Rev. Lett. 110, 171102 (2013).
    [Crossref]
  24. J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen, H. Müller, and M. Ando, “Low-frequency terrestrial gravitational-wave detectors,” Phys. Rev. D 88, 122003 (2013).
    [Crossref]
  25. C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).
  26. B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).
  27. R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
    [Crossref]
  28. B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, and P. Bouyer, “Dual-matter-wave inertial sensors in weightlessness,” Nat. Commun. 7, 13786 (2016).
    [Crossref]
  29. B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
    [Crossref]
  30. S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
    [Crossref]
  31. K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
    [Crossref]
  32. A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-data-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2, 054012 (2014).
    [Crossref]
  33. Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101 (2010).
    [Crossref]
  34. D. L. Butts, J. M. Kinast, B. P. Timmons, and R. E. Stoner, “Light pulse atom interferometry at short interrogation times,” J. Opt. Soc. Am. B 28, 416–421 (2011).
    [Crossref]
  35. M. Andia, R. Jannin, F. Nez, F. Biraden, S. Guellati-Khélifa, and P. Cladé, “Compact atomic gravimeter based on a pulsed and accelerated optical lattice,” Phys. Rev. A 88, 031605 (2013).
    [Crossref]
  36. P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
    [Crossref]
  37. G. W. Biedermann, H. J. McGuinness, A. V. Rakholia, Y.-Y. Jan, D. R. Wheeler, J. D. Sterk, and G. R. Burns, “Atom interferometry in a warm vapor,” Phys. Rev. Lett. 118, 163601 (2017).
    [Crossref]
  38. S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
    [Crossref]
  39. C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25, 16898–16906 (2017).
    [Crossref]
  40. A. N. Dinkelaker, M. Schiemangk, V. Schkolnik, A. Kenyon, K. Lampmann, A. Wenzlawski, P. Windpassinger, O. Hellmig, T. Wendrich, E. M. Rasel, M. Giunta, C. Deutsch, C. Kürbis, R. Smol, A. Wicht, M. Krutzik, and A. Peters, “Autonomous frequency stabilization of two extended-cavity diode lasers at the potassium wavelength on a sounding rocket,” Appl. Opt. 56, 1388–1396 (2017).
    [Crossref]
  41. K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, “Single-beam atom trap in a pyramidal and conical hollow mirror,” Opt. Lett. 21, 1177–1179 (1996).
    [Crossref]
  42. S. Pollock, J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds, “Characteristics of integrated magneto-optical traps for atom chips,” New J. Phys. 13, 043029 (2011).
    [Crossref]
  43. M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
    [Crossref]
  44. G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A. Kasevich, “Low-noise simultaneous fluorescence detection of two atomic states,” Opt. Lett. 34, 347–349 (2009).
    [Crossref]
  45. D. A. Steck, “Cesium D line data,” http://steck.us/alkalidata/cesiumnumbers.1.6.pdf .
  46. M.-K. Zhou, X. Xiong, L.-L. Chen, J.-F. Cui, X.-C. Duan, and Z.-K. Hu, “Note: A three-dimension active vibration isolator for precision atom gravimeters,” Rev. Sci. Instrum. 86, 046108 (2015).
    [Crossref]
  47. H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
    [Crossref]
  48. M. Cadoret, N. Zahzam, Y. Bidel, C. Diboune, A. Bonnin, F. Théron, and A. Bresson, “Phase shift formulation for N-light-pulse atom interferometers: application to inertial sensing,” J. Opt. Soc. Am. B 33, 1777–1788 (2016).
    [Crossref]
  49. A. Bonnin, C. Diboune, N. Zahazm, Y. Bidel, M. Cadoret, and A. Bresson, “New concepts of inertial measurements with multi-species atom interferometry,” arXiv:1710.06289 (2017).
  50. M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Laser cooling with a single laser beam and a planar diffractor,” Opt. Lett. 35, 3453–3455 (2010).
    [Crossref]
  51. C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
    [Crossref]
  52. J. P. McGilligan, P. F. Griffin, R. Elvin, S. J. Ingleby, E. Riis, and A. S. Arnold, “Grating chips for quantum technologies,” Sci. Rep. 7, 834 (2017).
    [Crossref]
  53. M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Single-laser, one beam, tetrahedral magneto-optical trap,” Opt. Express 17, 13601–13608 (2009).
    [Crossref]

2017 (6)

P. Asenbaum, C. Overstreet, T. Kovachy, D. D. Brown, J. M. Hogan, and M. Kasevich, “Phase shift in an atom interferometer due to spacetime curvature across its wave function,” Phys. Rev. Lett. 118, 183602 (2017).
[Crossref]

M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nat. Phys. 13, 938–942 (2017).
[Crossref]

G. W. Biedermann, H. J. McGuinness, A. V. Rakholia, Y.-Y. Jan, D. R. Wheeler, J. D. Sterk, and G. R. Burns, “Atom interferometry in a warm vapor,” Phys. Rev. Lett. 118, 163601 (2017).
[Crossref]

J. P. McGilligan, P. F. Griffin, R. Elvin, S. J. Ingleby, E. Riis, and A. S. Arnold, “Grating chips for quantum technologies,” Sci. Rep. 7, 834 (2017).
[Crossref]

A. N. Dinkelaker, M. Schiemangk, V. Schkolnik, A. Kenyon, K. Lampmann, A. Wenzlawski, P. Windpassinger, O. Hellmig, T. Wendrich, E. M. Rasel, M. Giunta, C. Deutsch, C. Kürbis, R. Smol, A. Wicht, M. Krutzik, and A. Peters, “Autonomous frequency stabilization of two extended-cavity diode lasers at the potassium wavelength on a sounding rocket,” Appl. Opt. 56, 1388–1396 (2017).
[Crossref]

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25, 16898–16906 (2017).
[Crossref]

2016 (10)

M. Cadoret, N. Zahzam, Y. Bidel, C. Diboune, A. Bonnin, F. Théron, and A. Bresson, “Phase shift formulation for N-light-pulse atom interferometers: application to inertial sensing,” J. Opt. Soc. Am. B 33, 1777–1788 (2016).
[Crossref]

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, and P. Bouyer, “Dual-matter-wave inertial sensors in weightlessness,” Nat. Commun. 7, 13786 (2016).
[Crossref]

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1  nrad/sec rotation stability,” Phys. Rev. Lett. 116, 183003 (2016).
[Crossref]

R. H. Parker, C. Yu, B. Estey, W. Zhong, E. Huang, and H. Müller, “Controlling the multiport nature of Bragg diffraction in atom interferometry,” Phys. Rev. A 94, 053618 (2016).
[Crossref]

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

2015 (7)

P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, and J. Khoury, “Atom-interferometry constraints on dark energy,” Science 349, 849–851 (2015).
[Crossref]

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
[Crossref]

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114, 013001 (2015).
[Crossref]

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-meter scale,” Nature 528, 530–533 (2015).
[Crossref]

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref]

M.-K. Zhou, X. Xiong, L.-L. Chen, J.-F. Cui, X.-C. Duan, and Z.-K. Hu, “Note: A three-dimension active vibration isolator for precision atom gravimeters,” Rev. Sci. Instrum. 86, 046108 (2015).
[Crossref]

2014 (2)

A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-data-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2, 054012 (2014).
[Crossref]

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

2013 (7)

S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339, 554–557 (2013).
[Crossref]

Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88, 043610 (2013).
[Crossref]

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref]

P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “New method for gravitational wave detection with atomic sensors,” Phys. Rev. Lett. 110, 171102 (2013).
[Crossref]

J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen, H. Müller, and M. Ando, “Low-frequency terrestrial gravitational-wave detectors,” Phys. Rev. D 88, 122003 (2013).
[Crossref]

M. Andia, R. Jannin, F. Nez, F. Biraden, S. Guellati-Khélifa, and P. Cladé, “Compact atomic gravimeter based on a pulsed and accelerated optical lattice,” Phys. Rev. A 88, 031605 (2013).
[Crossref]

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

2011 (6)

D. L. Butts, J. M. Kinast, B. P. Timmons, and R. E. Stoner, “Light pulse atom interferometry at short interrogation times,” J. Opt. Soc. Am. B 28, 416–421 (2011).
[Crossref]

N. Yu and M. Tinto, “Gravitational wave detection with single-laser atom interferometers,” Gen. Relativ. Gravit. 43, 1943–1952 (2011).
[Crossref]

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107, 133001 (2011).
[Crossref]

S. Pollock, J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds, “Characteristics of integrated magneto-optical traps for atom chips,” New J. Phys. 13, 043029 (2011).
[Crossref]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New determination of the fine structure constant and test of the quantum electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref]

2010 (2)

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101 (2010).
[Crossref]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Laser cooling with a single laser beam and a planar diffractor,” Opt. Lett. 35, 3453–3455 (2010).
[Crossref]

2009 (3)

2008 (1)

H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[Crossref]

2007 (1)

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[Crossref]

2006 (1)

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

2002 (1)

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[Crossref]

2001 (1)

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25–61 (2001).
[Crossref]

1997 (1)

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
[Crossref]

1996 (1)

1991 (1)

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

Abend, S.

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
[Crossref]

Adhikari, R. X.

J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen, H. Müller, and M. Ando, “Low-frequency terrestrial gravitational-wave detectors,” Phys. Rev. D 88, 122003 (2013).
[Crossref]

Ahlers, H.

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
[Crossref]

Andia, M.

M. Andia, R. Jannin, F. Nez, F. Biraden, S. Guellati-Khélifa, and P. Cladé, “Compact atomic gravimeter based on a pulsed and accelerated optical lattice,” Phys. Rev. A 88, 031605 (2013).
[Crossref]

Ando, M.

J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen, H. Müller, and M. Ando, “Low-frequency terrestrial gravitational-wave detectors,” Phys. Rev. D 88, 122003 (2013).
[Crossref]

Antoni-Micollier, L.

B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, and P. Bouyer, “Dual-matter-wave inertial sensors in weightlessness,” Nat. Commun. 7, 13786 (2016).
[Crossref]

Arnold, A. S.

J. P. McGilligan, P. F. Griffin, R. Elvin, S. J. Ingleby, E. Riis, and A. S. Arnold, “Grating chips for quantum technologies,” Sci. Rep. 7, 834 (2017).
[Crossref]

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Laser cooling with a single laser beam and a planar diffractor,” Opt. Lett. 35, 3453–3455 (2010).
[Crossref]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Single-laser, one beam, tetrahedral magneto-optical trap,” Opt. Express 17, 13601–13608 (2009).
[Crossref]

Asenbaum, P.

P. Asenbaum, C. Overstreet, T. Kovachy, D. D. Brown, J. M. Hogan, and M. Kasevich, “Phase shift in an atom interferometer due to spacetime curvature across its wave function,” Phys. Rev. Lett. 118, 183602 (2017).
[Crossref]

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-meter scale,” Nature 528, 530–533 (2015).
[Crossref]

Barrett, B.

B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, and P. Bouyer, “Dual-matter-wave inertial sensors in weightlessness,” Nat. Commun. 7, 13786 (2016).
[Crossref]

Battelier, B.

B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, and P. Bouyer, “Dual-matter-wave inertial sensors in weightlessness,” Nat. Commun. 7, 13786 (2016).
[Crossref]

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

Bidel, Y.

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25, 16898–16906 (2017).
[Crossref]

M. Cadoret, N. Zahzam, Y. Bidel, C. Diboune, A. Bonnin, F. Théron, and A. Bresson, “Phase shift formulation for N-light-pulse atom interferometers: application to inertial sensing,” J. Opt. Soc. Am. B 33, 1777–1788 (2016).
[Crossref]

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

A. Bonnin, C. Diboune, N. Zahazm, Y. Bidel, M. Cadoret, and A. Bresson, “New concepts of inertial measurements with multi-species atom interferometry,” arXiv:1710.06289 (2017).

Biedermann, G. W.

G. W. Biedermann, H. J. McGuinness, A. V. Rakholia, Y.-Y. Jan, D. R. Wheeler, J. D. Sterk, and G. R. Burns, “Atom interferometry in a warm vapor,” Phys. Rev. Lett. 118, 163601 (2017).
[Crossref]

A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-data-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2, 054012 (2014).
[Crossref]

G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A. Kasevich, “Low-noise simultaneous fluorescence detection of two atomic states,” Opt. Lett. 34, 347–349 (2009).
[Crossref]

Biraben, F.

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New determination of the fine structure constant and test of the quantum electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref]

Biraden, F.

M. Andia, R. Jannin, F. Nez, F. Biraden, S. Guellati-Khélifa, and P. Cladé, “Compact atomic gravimeter based on a pulsed and accelerated optical lattice,” Phys. Rev. A 88, 031605 (2013).
[Crossref]

Bodart, Q.

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101 (2010).
[Crossref]

Bonnin, A.

M. Cadoret, N. Zahzam, Y. Bidel, C. Diboune, A. Bonnin, F. Théron, and A. Bresson, “Phase shift formulation for N-light-pulse atom interferometers: application to inertial sensing,” J. Opt. Soc. Am. B 33, 1777–1788 (2016).
[Crossref]

A. Bonnin, C. Diboune, N. Zahazm, Y. Bidel, M. Cadoret, and A. Bresson, “New concepts of inertial measurements with multi-species atom interferometry,” arXiv:1710.06289 (2017).

Bordé, C. J.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

Bouchendira, R.

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New determination of the fine structure constant and test of the quantum electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref]

Bouyer, P.

B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, and P. Bouyer, “Dual-matter-wave inertial sensors in weightlessness,” Nat. Commun. 7, 13786 (2016).
[Crossref]

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101 (2010).
[Crossref]

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
[Crossref]

Bresson, A.

C. Diboune, N. Zahzam, Y. Bidel, M. Cadoret, and A. Bresson, “Multi-line fiber laser system for cesium and rubidium atom interferometry,” Opt. Express 25, 16898–16906 (2017).
[Crossref]

M. Cadoret, N. Zahzam, Y. Bidel, C. Diboune, A. Bonnin, F. Théron, and A. Bresson, “Phase shift formulation for N-light-pulse atom interferometers: application to inertial sensing,” J. Opt. Soc. Am. B 33, 1777–1788 (2016).
[Crossref]

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

A. Bonnin, C. Diboune, N. Zahazm, Y. Bidel, M. Cadoret, and A. Bresson, “New concepts of inertial measurements with multi-species atom interferometry,” arXiv:1710.06289 (2017).

Brown, D. D.

P. Asenbaum, C. Overstreet, T. Kovachy, D. D. Brown, J. M. Hogan, and M. Kasevich, “Phase shift in an atom interferometer due to spacetime curvature across its wave function,” Phys. Rev. Lett. 118, 183602 (2017).
[Crossref]

Brown, J. M.

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref]

S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339, 554–557 (2013).
[Crossref]

Burns, G. R.

G. W. Biedermann, H. J. McGuinness, A. V. Rakholia, Y.-Y. Jan, D. R. Wheeler, J. D. Sterk, and G. R. Burns, “Atom interferometry in a warm vapor,” Phys. Rev. Lett. 118, 163601 (2017).
[Crossref]

Butts, D. L.

Cacciapuoti, L.

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114, 013001 (2015).
[Crossref]

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

Cadoret, M.

Canuel, B.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

Cheinet, P.

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

Chen, L.-L.

M.-K. Zhou, X. Xiong, L.-L. Chen, J.-F. Cui, X.-C. Duan, and Z.-K. Hu, “Note: A three-dimension active vibration isolator for precision atom gravimeters,” Rev. Sci. Instrum. 86, 046108 (2015).
[Crossref]

Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88, 043610 (2013).
[Crossref]

Chen, X.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Chen, Y.

J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen, H. Müller, and M. Ando, “Low-frequency terrestrial gravitational-wave detectors,” Phys. Rev. D 88, 122003 (2013).
[Crossref]

Cheng, B.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

Chichet, L.

B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, and P. Bouyer, “Dual-matter-wave inertial sensors in weightlessness,” Nat. Commun. 7, 13786 (2016).
[Crossref]

Chiow, S.-W.

H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[Crossref]

Chu, S.

H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[Crossref]

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25–61 (2001).
[Crossref]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

Chung, K. Y.

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25–61 (2001).
[Crossref]

Chung, K.-Y.

H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[Crossref]

Cladé, P.

M. Andia, R. Jannin, F. Nez, F. Biraden, S. Guellati-Khélifa, and P. Cladé, “Compact atomic gravimeter based on a pulsed and accelerated optical lattice,” Phys. Rev. A 88, 031605 (2013).
[Crossref]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New determination of the fine structure constant and test of the quantum electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref]

Clairon, A.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

Close, J. D.

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

Cotter, J. P.

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

S. Pollock, J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds, “Characteristics of integrated magneto-optical traps for atom chips,” New J. Phys. 13, 043029 (2011).
[Crossref]

Cronin, A. D.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Cui, J.-F.

M.-K. Zhou, X. Xiong, L.-L. Chen, J.-F. Cui, X.-C. Duan, and Z.-K. Hu, “Note: A three-dimension active vibration isolator for precision atom gravimeters,” Rev. Sci. Instrum. 86, 046108 (2015).
[Crossref]

Debs, J. E.

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

Deng, X.-B.

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

Deslauriers, L.

Deutsch, C.

Diboune, C.

Dickerson, S. M.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-meter scale,” Nature 528, 530–533 (2015).
[Crossref]

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref]

Dimarcq, N.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

Dinkelaker, A. N.

Donnelly, C. A.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-meter scale,” Nature 528, 530–533 (2015).
[Crossref]

Duan, W.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Duan, X.-C.

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

M.-K. Zhou, X. Xiong, L.-L. Chen, J.-F. Cui, X.-C. Duan, and Z.-K. Hu, “Note: A three-dimension active vibration isolator for precision atom gravimeters,” Rev. Sci. Instrum. 86, 046108 (2015).
[Crossref]

Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88, 043610 (2013).
[Crossref]

Dutta, I.

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1  nrad/sec rotation stability,” Phys. Rev. Lett. 116, 183003 (2016).
[Crossref]

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

Elder, B.

M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nat. Phys. 13, 938–942 (2017).
[Crossref]

Elvin, R.

J. P. McGilligan, P. F. Griffin, R. Elvin, S. J. Ingleby, E. Riis, and A. S. Arnold, “Grating chips for quantum technologies,” Sci. Rep. 7, 834 (2017).
[Crossref]

English, D.

S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339, 554–557 (2013).
[Crossref]

Ertmer, W.

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
[Crossref]

Estey, B.

R. H. Parker, C. Yu, B. Estey, W. Zhong, E. Huang, and H. Müller, “Controlling the multiport nature of Bragg diffraction in atom interferometry,” Phys. Rev. A 94, 053618 (2016).
[Crossref]

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref]

S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339, 554–557 (2013).
[Crossref]

Evans, M.

J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen, H. Müller, and M. Ando, “Low-frequency terrestrial gravitational-wave detectors,” Phys. Rev. D 88, 122003 (2013).
[Crossref]

Everitt, P. J.

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

Fang, B.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1  nrad/sec rotation stability,” Phys. Rev. Lett. 116, 183003 (2016).
[Crossref]

Fils, J.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

Fixler, J. B.

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[Crossref]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[Crossref]

Foster, G. T.

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[Crossref]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[Crossref]

Freier, C.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).

Gaaloul, N.

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
[Crossref]

Gao, F.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Garrido Alzar, C. L.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1  nrad/sec rotation stability,” Phys. Rev. Lett. 116, 183003 (2016).
[Crossref]

Gauguet, A.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

Gebbe, M.

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

Geiger, R.

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1  nrad/sec rotation stability,” Phys. Rev. Lett. 116, 183003 (2016).
[Crossref]

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

Gersemann, M.

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

Giese, E.

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

Gillot, P.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

Giunta, M.

Graham, P. W.

P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “New method for gravitational wave detection with atomic sensors,” Phys. Rev. Lett. 110, 171102 (2013).
[Crossref]

Griffin, P. F.

J. P. McGilligan, P. F. Griffin, R. Elvin, S. J. Ingleby, E. Riis, and A. S. Arnold, “Grating chips for quantum technologies,” Sci. Rep. 7, 834 (2017).
[Crossref]

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Laser cooling with a single laser beam and a planar diffractor,” Opt. Lett. 35, 3453–3455 (2010).
[Crossref]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Single-laser, one beam, tetrahedral magneto-optical trap,” Opt. Express 17, 13601–13608 (2009).
[Crossref]

Guellati-Khélifa, S.

M. Andia, R. Jannin, F. Nez, F. Biraden, S. Guellati-Khélifa, and P. Cladé, “Compact atomic gravimeter based on a pulsed and accelerated optical lattice,” Phys. Rev. A 88, 031605 (2013).
[Crossref]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New determination of the fine structure constant and test of the quantum electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref]

Gustavson, T. L.

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
[Crossref]

Hamilton, P.

M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nat. Phys. 13, 938–942 (2017).
[Crossref]

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref]

P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, and J. Khoury, “Atom-interferometry constraints on dark energy,” Science 349, 849–851 (2015).
[Crossref]

Hardman, K. S.

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

Harms, J.

J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen, H. Müller, and M. Ando, “Low-frequency terrestrial gravitational-wave detectors,” Phys. Rev. D 88, 122003 (2013).
[Crossref]

Hartwing, J.

J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
[Crossref]

Haslinger, P.

M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nat. Phys. 13, 938–942 (2017).
[Crossref]

P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, and J. Khoury, “Atom-interferometry constraints on dark energy,” Science 349, 849–851 (2015).
[Crossref]

Hauth, M.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).

Hellmig, O.

Herrmann, S.

H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[Crossref]

Hinds, E. A.

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

S. Pollock, J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds, “Characteristics of integrated magneto-optical traps for atom chips,” New J. Phys. 13, 043029 (2011).
[Crossref]

Hogan, J. M.

P. Asenbaum, C. Overstreet, T. Kovachy, D. D. Brown, J. M. Hogan, and M. Kasevich, “Phase shift in an atom interferometer due to spacetime curvature across its wave function,” Phys. Rev. Lett. 118, 183602 (2017).
[Crossref]

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-meter scale,” Nature 528, 530–533 (2015).
[Crossref]

P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “New method for gravitational wave detection with atomic sensors,” Phys. Rev. Lett. 110, 171102 (2013).
[Crossref]

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref]

Hohensee, M. A.

S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339, 554–557 (2013).
[Crossref]

Holleville, D.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

Hu, Z.-K.

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

M.-K. Zhou, X. Xiong, L.-L. Chen, J.-F. Cui, X.-C. Duan, and Z.-K. Hu, “Note: A three-dimension active vibration isolator for precision atom gravimeters,” Rev. Sci. Instrum. 86, 046108 (2015).
[Crossref]

Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88, 043610 (2013).
[Crossref]

Huang, E.

R. H. Parker, C. Yu, B. Estey, W. Zhong, E. Huang, and H. Müller, “Controlling the multiport nature of Bragg diffraction in atom interferometry,” Phys. Rev. A 94, 053618 (2016).
[Crossref]

Ingleby, S. J.

J. P. McGilligan, P. F. Griffin, R. Elvin, S. J. Ingleby, E. Riis, and A. S. Arnold, “Grating chips for quantum technologies,” Sci. Rep. 7, 834 (2017).
[Crossref]

Ironside, C. N.

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

Jaffe, M.

M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nat. Phys. 13, 938–942 (2017).
[Crossref]

P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, and J. Khoury, “Atom-interferometry constraints on dark energy,” Science 349, 849–851 (2015).
[Crossref]

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref]

Jan, Y.-Y.

G. W. Biedermann, H. J. McGuinness, A. V. Rakholia, Y.-Y. Jan, D. R. Wheeler, J. D. Sterk, and G. R. Burns, “Atom interferometry in a warm vapor,” Phys. Rev. Lett. 118, 163601 (2017).
[Crossref]

Jannin, R.

M. Andia, R. Jannin, F. Nez, F. Biraden, S. Guellati-Khélifa, and P. Cladé, “Compact atomic gravimeter based on a pulsed and accelerated optical lattice,” Phys. Rev. A 88, 031605 (2013).
[Crossref]

Jhe, W.

Johnson, D. M. S.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref]

Kasevich, M.

P. Asenbaum, C. Overstreet, T. Kovachy, D. D. Brown, J. M. Hogan, and M. Kasevich, “Phase shift in an atom interferometer due to spacetime curvature across its wave function,” Phys. Rev. Lett. 118, 183602 (2017).
[Crossref]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

Kasevich, M. A.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-meter scale,” Nature 528, 530–533 (2015).
[Crossref]

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref]

P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “New method for gravitational wave detection with atomic sensors,” Phys. Rev. Lett. 110, 171102 (2013).
[Crossref]

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107, 133001 (2011).
[Crossref]

G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A. Kasevich, “Low-noise simultaneous fluorescence detection of two atomic states,” Opt. Lett. 34, 347–349 (2009).
[Crossref]

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[Crossref]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[Crossref]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
[Crossref]

Kenyon, A.

Khoury, J.

M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nat. Phys. 13, 938–942 (2017).
[Crossref]

P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, and J. Khoury, “Atom-interferometry constraints on dark energy,” Science 349, 849–851 (2015).
[Crossref]

Kim, J. A.

Kinast, J. M.

Kovachy, T.

P. Asenbaum, C. Overstreet, T. Kovachy, D. D. Brown, J. M. Hogan, and M. Kasevich, “Phase shift in an atom interferometer due to spacetime curvature across its wave function,” Phys. Rev. Lett. 118, 183602 (2017).
[Crossref]

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-meter scale,” Nature 528, 530–533 (2015).
[Crossref]

Krutzik, M.

A. N. Dinkelaker, M. Schiemangk, V. Schkolnik, A. Kenyon, K. Lampmann, A. Wenzlawski, P. Windpassinger, O. Hellmig, T. Wendrich, E. M. Rasel, M. Giunta, C. Deutsch, C. Kürbis, R. Smol, A. Wicht, M. Krutzik, and A. Peters, “Autonomous frequency stabilization of two extended-cavity diode lasers at the potassium wavelength on a sounding rocket,” Appl. Opt. 56, 1388–1396 (2017).
[Crossref]

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

Kuan, P.-C.

S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339, 554–557 (2013).
[Crossref]

Kuhl, R.

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

Kuhn, C. C. N.

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

Kürbis, C.

Laliotis, A.

S. Pollock, J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds, “Characteristics of integrated magneto-optical traps for atom chips,” New J. Phys. 13, 043029 (2011).
[Crossref]

Lämmerzahl, C.

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

Lampmann, K.

Lan, S.-Y.

S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339, 554–557 (2013).
[Crossref]

Landragin, A.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1  nrad/sec rotation stability,” Phys. Rev. Lett. 116, 183003 (2016).
[Crossref]

B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, and P. Bouyer, “Dual-matter-wave inertial sensors in weightlessness,” Nat. Commun. 7, 13786 (2016).
[Crossref]

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101 (2010).
[Crossref]

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

Lautier, J.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

Leduc, F.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

Lee, K. I.

Lévèque, T.

B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, and P. Bouyer, “Dual-matter-wave inertial sensors in weightlessness,” Nat. Commun. 7, 13786 (2016).
[Crossref]

Leykauf, B.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).

Long, S.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Lours, M.

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

Luo, J.

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88, 043610 (2013).
[Crossref]

Maisenbacher, L.

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref]

Malossi, N.

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101 (2010).
[Crossref]

Manju, P.

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

McDonald, G. D.

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

McGilligan, J. P.

J. P. McGilligan, P. F. Griffin, R. Elvin, S. J. Ingleby, E. Riis, and A. S. Arnold, “Grating chips for quantum technologies,” Sci. Rep. 7, 834 (2017).
[Crossref]

McGuinness, H. J.

G. W. Biedermann, H. J. McGuinness, A. V. Rakholia, Y.-Y. Jan, D. R. Wheeler, J. D. Sterk, and G. R. Burns, “Atom interferometry in a warm vapor,” Phys. Rev. Lett. 118, 163601 (2017).
[Crossref]

A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-data-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2, 054012 (2014).
[Crossref]

McGuirk, J. M.

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[Crossref]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[Crossref]

Menchetti, M.

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114, 013001 (2015).
[Crossref]

Ménoret, V.

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

Merlet, S.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101 (2010).
[Crossref]

Miller, M. C.

J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen, H. Müller, and M. Ando, “Low-frequency terrestrial gravitational-wave detectors,” Phys. Rev. D 88, 122003 (2013).
[Crossref]

Moron, F.

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

Müller, H.

M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nat. Phys. 13, 938–942 (2017).
[Crossref]

R. H. Parker, C. Yu, B. Estey, W. Zhong, E. Huang, and H. Müller, “Controlling the multiport nature of Bragg diffraction in atom interferometry,” Phys. Rev. A 94, 053618 (2016).
[Crossref]

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref]

P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, and J. Khoury, “Atom-interferometry constraints on dark energy,” Science 349, 849–851 (2015).
[Crossref]

J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen, H. Müller, and M. Ando, “Low-frequency terrestrial gravitational-wave detectors,” Phys. Rev. D 88, 122003 (2013).
[Crossref]

S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339, 554–557 (2013).
[Crossref]

H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[Crossref]

Müller, J.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).

Müntinga, H.

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

Nez, F.

M. Andia, R. Jannin, F. Nez, F. Biraden, S. Guellati-Khélifa, and P. Cladé, “Compact atomic gravimeter based on a pulsed and accelerated optical lattice,” Phys. Rev. A 88, 031605 (2013).
[Crossref]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New determination of the fine structure constant and test of the quantum electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref]

Noh, H. R.

Nshii, C.

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

Overstreet, C.

P. Asenbaum, C. Overstreet, T. Kovachy, D. D. Brown, J. M. Hogan, and M. Kasevich, “Phase shift in an atom interferometer due to spacetime curvature across its wave function,” Phys. Rev. Lett. 118, 183602 (2017).
[Crossref]

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-meter scale,” Nature 528, 530–533 (2015).
[Crossref]

Parker, R. H.

R. H. Parker, C. Yu, B. Estey, W. Zhong, E. Huang, and H. Müller, “Controlling the multiport nature of Bragg diffraction in atom interferometry,” Phys. Rev. A 94, 053618 (2016).
[Crossref]

Peng, W.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Pereira Dos Santos, F.

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101 (2010).
[Crossref]

Peters, A.

A. N. Dinkelaker, M. Schiemangk, V. Schkolnik, A. Kenyon, K. Lampmann, A. Wenzlawski, P. Windpassinger, O. Hellmig, T. Wendrich, E. M. Rasel, M. Giunta, C. Deutsch, C. Kürbis, R. Smol, A. Wicht, M. Krutzik, and A. Peters, “Autonomous frequency stabilization of two extended-cavity diode lasers at the potassium wavelength on a sounding rocket,” Appl. Opt. 56, 1388–1396 (2017).
[Crossref]

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25–61 (2001).
[Crossref]

Pollock, S.

S. Pollock, J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds, “Characteristics of integrated magneto-optical traps for atom chips,” New J. Phys. 13, 043029 (2011).
[Crossref]

Posso-Trujillo, K.

J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
[Crossref]

Prevedelli, M.

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114, 013001 (2015).
[Crossref]

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

Pritchard, D. E.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Rajendran, S.

P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “New method for gravitational wave detection with atomic sensors,” Phys. Rev. Lett. 110, 171102 (2013).
[Crossref]

Rakholia, A. V.

G. W. Biedermann, H. J. McGuinness, A. V. Rakholia, Y.-Y. Jan, D. R. Wheeler, J. D. Sterk, and G. R. Burns, “Atom interferometry in a warm vapor,” Phys. Rev. Lett. 118, 163601 (2017).
[Crossref]

A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-data-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2, 054012 (2014).
[Crossref]

Ramirez-Martinez, F.

S. Pollock, J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds, “Characteristics of integrated magneto-optical traps for atom chips,” New J. Phys. 13, 043029 (2011).
[Crossref]

Rasel, E. M.

A. N. Dinkelaker, M. Schiemangk, V. Schkolnik, A. Kenyon, K. Lampmann, A. Wenzlawski, P. Windpassinger, O. Hellmig, T. Wendrich, E. M. Rasel, M. Giunta, C. Deutsch, C. Kürbis, R. Smol, A. Wicht, M. Krutzik, and A. Peters, “Autonomous frequency stabilization of two extended-cavity diode lasers at the potassium wavelength on a sounding rocket,” Appl. Opt. 56, 1388–1396 (2017).
[Crossref]

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
[Crossref]

Riis, E.

J. P. McGilligan, P. F. Griffin, R. Elvin, S. J. Ingleby, E. Riis, and A. S. Arnold, “Grating chips for quantum technologies,” Sci. Rep. 7, 834 (2017).
[Crossref]

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Laser cooling with a single laser beam and a planar diffractor,” Opt. Lett. 35, 3453–3455 (2010).
[Crossref]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Single-laser, one beam, tetrahedral magneto-optical trap,” Opt. Express 17, 13601–13608 (2009).
[Crossref]

Robins, N. P.

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

Rosi, G.

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114, 013001 (2015).
[Crossref]

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

Roura, A.

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

Savoie, D.

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1  nrad/sec rotation stability,” Phys. Rev. Lett. 116, 183003 (2016).
[Crossref]

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

Scherneck, H.-G.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).

Schiemangk, M.

Schilling, M.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).

Schkolnik, V.

Schleich, W. P.

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

Schlippert, D.

J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
[Crossref]

Schmiedmayer, J.

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Schubert, C.

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
[Crossref]

See, P.

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

Sengstock, K.

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

Shaom, C.-G.

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

Simmons, Q.

P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, and J. Khoury, “Atom-interferometry constraints on dark energy,” Science 349, 849–851 (2015).
[Crossref]

Sinclair, A. G.

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

Slagmolen, B. J. J.

J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen, H. Müller, and M. Ando, “Low-frequency terrestrial gravitational-wave detectors,” Phys. Rev. D 88, 122003 (2013).
[Crossref]

Smol, R.

Snadden, M. J.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[Crossref]

Sooriyabandara, M. A.

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

Sorrentino, F.

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114, 013001 (2015).
[Crossref]

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

Sterk, J. D.

G. W. Biedermann, H. J. McGuinness, A. V. Rakholia, Y.-Y. Jan, D. R. Wheeler, J. D. Sterk, and G. R. Burns, “Atom interferometry in a warm vapor,” Phys. Rev. Lett. 118, 163601 (2017).
[Crossref]

Stern, G.

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

Stockton, J. K.

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107, 133001 (2011).
[Crossref]

Stoner, R. E.

Sugarbaker, A.

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-meter scale,” Nature 528, 530–533 (2015).
[Crossref]

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref]

Sun, B.-L.

Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88, 043610 (2013).
[Crossref]

Tackmann, G.

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

Takase, K.

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107, 133001 (2011).
[Crossref]

G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A. Kasevich, “Low-noise simultaneous fluorescence detection of two atomic states,” Opt. Lett. 34, 347–349 (2009).
[Crossref]

Tang, B.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Théron, F.

Timmons, B. P.

Tino, G. M.

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114, 013001 (2015).
[Crossref]

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

Tinto, M.

N. Yu and M. Tinto, “Gravitational wave detection with single-laser atom interferometers,” Gen. Relativ. Gravit. 43, 1943–1952 (2011).
[Crossref]

Upadhye, A.

M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nat. Phys. 13, 938–942 (2017).
[Crossref]

Vangeleyn, M.

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Laser cooling with a single laser beam and a planar diffractor,” Opt. Lett. 35, 3453–3455 (2010).
[Crossref]

M. Vangeleyn, P. F. Griffin, E. Riis, and A. S. Arnold, “Single-laser, one beam, tetrahedral magneto-optical trap,” Opt. Express 17, 13601–13608 (2009).
[Crossref]

Venon, B.

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1  nrad/sec rotation stability,” Phys. Rev. Lett. 116, 183003 (2016).
[Crossref]

Villing, A.

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

Virdis, A.

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

Wang, J.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Wendrich, T.

Wenzlawski, A.

A. N. Dinkelaker, M. Schiemangk, V. Schkolnik, A. Kenyon, K. Lampmann, A. Wenzlawski, P. Windpassinger, O. Hellmig, T. Wendrich, E. M. Rasel, M. Giunta, C. Deutsch, C. Kürbis, R. Smol, A. Wicht, M. Krutzik, and A. Peters, “Autonomous frequency stabilization of two extended-cavity diode lasers at the potassium wavelength on a sounding rocket,” Appl. Opt. 56, 1388–1396 (2017).
[Crossref]

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

Wheeler, D. R.

G. W. Biedermann, H. J. McGuinness, A. V. Rakholia, Y.-Y. Jan, D. R. Wheeler, J. D. Sterk, and G. R. Burns, “Atom interferometry in a warm vapor,” Phys. Rev. Lett. 118, 163601 (2017).
[Crossref]

Wicht, A.

Wigley, P. B.

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

Windpassinger, P.

A. N. Dinkelaker, M. Schiemangk, V. Schkolnik, A. Kenyon, K. Lampmann, A. Wenzlawski, P. Windpassinger, O. Hellmig, T. Wendrich, E. M. Rasel, M. Giunta, C. Deutsch, C. Kürbis, R. Smol, A. Wicht, M. Krutzik, and A. Peters, “Autonomous frequency stabilization of two extended-cavity diode lasers at the potassium wavelength on a sounding rocket,” Appl. Opt. 56, 1388–1396 (2017).
[Crossref]

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

Wu, X.

Wziontek, H.

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).

Xiong, F.

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

Xiong, X.

M.-K. Zhou, X. Xiong, L.-L. Chen, J.-F. Cui, X.-C. Duan, and Z.-K. Hu, “Note: A three-dimension active vibration isolator for precision atom gravimeters,” Rev. Sci. Instrum. 86, 046108 (2015).
[Crossref]

Xiong, Z.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Xu, V.

M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nat. Phys. 13, 938–942 (2017).
[Crossref]

Xu, W.-J.

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

Xu, Y.-Y.

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

Yu, C.

R. H. Parker, C. Yu, B. Estey, W. Zhong, E. Huang, and H. Müller, “Controlling the multiport nature of Bragg diffraction in atom interferometry,” Phys. Rev. A 94, 053618 (2016).
[Crossref]

Yu, N.

N. Yu and M. Tinto, “Gravitational wave detection with single-laser atom interferometers,” Gen. Relativ. Gravit. 43, 1943–1952 (2011).
[Crossref]

Zahazm, N.

A. Bonnin, C. Diboune, N. Zahazm, Y. Bidel, M. Cadoret, and A. Bresson, “New concepts of inertial measurements with multi-species atom interferometry,” arXiv:1710.06289 (2017).

Zahzam, N.

Zhan, M.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Zhan, S.

Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88, 043610 (2013).
[Crossref]

Zhang, K.

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

Zhang, Q.-Z.

Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88, 043610 (2013).
[Crossref]

Zhang, Y.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Zhong, J.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Zhong, W.

R. H. Parker, C. Yu, B. Estey, W. Zhong, E. Huang, and H. Müller, “Controlling the multiport nature of Bragg diffraction in atom interferometry,” Phys. Rev. A 94, 053618 (2016).
[Crossref]

Zhou, L.

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

Zhou, M.-K.

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

M.-K. Zhou, X. Xiong, L.-L. Chen, J.-F. Cui, X.-C. Duan, and Z.-K. Hu, “Note: A three-dimension active vibration isolator for precision atom gravimeters,” Rev. Sci. Instrum. 86, 046108 (2015).
[Crossref]

Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88, 043610 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101 (2010).
[Crossref]

Gen. Relativ. Gravit. (1)

N. Yu and M. Tinto, “Gravitational wave detection with single-laser atom interferometers,” Gen. Relativ. Gravit. 43, 1943–1952 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. Conf. Ser. (2)

C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys. Conf. Ser. 723, 012050 (2016).

B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. Garrido Alzar, R. Geiger, S. Merlet, F. Pereira Dos Santos, and A. Landragin, “Metrology with atom interferometry: inertial sensors from laboratory to field applications,” J. Phys. Conf. Ser. 723, 012049 (2016).

Metrologia (1)

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25–61 (2001).
[Crossref]

Nat. Commun. (2)

R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
[Crossref]

B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, and P. Bouyer, “Dual-matter-wave inertial sensors in weightlessness,” Nat. Commun. 7, 13786 (2016).
[Crossref]

Nat. Nanotechnol. (1)

C. Nshii, M. Vangeleyn, J. P. Cotter, P. F. Griffin, E. A. Hinds, C. N. Ironside, P. See, A. G. Sinclair, E. Riis, and A. S. Arnold, “A surface-patterned chip as a strong source of ultracold atoms for quantum technologies,” Nat. Nanotechnol. 8, 321–324 (2013).
[Crossref]

Nat. Phys. (1)

M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nat. Phys. 13, 938–942 (2017).
[Crossref]

Nature (2)

T. Kovachy, P. Asenbaum, C. Overstreet, C. A. Donnelly, S. M. Dickerson, A. Sugarbaker, J. M. Hogan, and M. A. Kasevich, “Quantum superposition at the half-meter scale,” Nature 528, 530–533 (2015).
[Crossref]

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510, 518–521 (2014).
[Crossref]

New J. Phys. (2)

J. Hartwing, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17, 035001 (2015).
[Crossref]

S. Pollock, J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds, “Characteristics of integrated magneto-optical traps for atom chips,” New J. Phys. 13, 043029 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (4)

M. Andia, R. Jannin, F. Nez, F. Biraden, S. Guellati-Khélifa, and P. Cladé, “Compact atomic gravimeter based on a pulsed and accelerated optical lattice,” Phys. Rev. A 88, 031605 (2013).
[Crossref]

R. H. Parker, C. Yu, B. Estey, W. Zhong, E. Huang, and H. Müller, “Controlling the multiport nature of Bragg diffraction in atom interferometry,” Phys. Rev. A 94, 053618 (2016).
[Crossref]

Z.-K. Hu, B.-L. Sun, X.-C. Duan, M.-K. Zhou, L.-L. Chen, S. Zhan, Q.-Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88, 043610 (2013).
[Crossref]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[Crossref]

Phys. Rev. Appl. (1)

A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-data-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2, 054012 (2014).
[Crossref]

Phys. Rev. D (1)

J. Harms, B. J. J. Slagmolen, R. X. Adhikari, M. C. Miller, M. Evans, Y. Chen, H. Müller, and M. Ando, “Low-frequency terrestrial gravitational-wave detectors,” Phys. Rev. D 88, 122003 (2013).
[Crossref]

Phys. Rev. Lett. (18)

P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “New method for gravitational wave detection with atomic sensors,” Phys. Rev. Lett. 110, 171102 (2013).
[Crossref]

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref]

G. W. Biedermann, H. J. McGuinness, A. V. Rakholia, Y.-Y. Jan, D. R. Wheeler, J. D. Sterk, and G. R. Burns, “Atom interferometry in a warm vapor,” Phys. Rev. Lett. 118, 163601 (2017).
[Crossref]

S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Atom-chip fountain gravimeter,” Phys. Rev. Lett. 117, 203003 (2016).
[Crossref]

X.-C. Duan, X.-B. Deng, M.-K. Zhou, K. Zhang, W.-J. Xu, F. Xiong, Y.-Y. Xu, C.-G. Shaom, J. Luo, and Z.-K. Hu, “Test of the universality of free fall with atoms in different spin orientations,” Phys. Rev. Lett. 117, 023001 (2016).
[Crossref]

B. Canuel, F. Leduc, D. Holleville, A. Gauguet, J. Fils, A. Virdis, A. Clairon, N. Dimarcq, C. J. Bordé, A. Landragin, and P. Bouyer, “Six-axis inertial sensor using cold-atom interferometry,” Phys. Rev. Lett. 97, 010402 (2006).
[Crossref]

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111, 083001 (2013).
[Crossref]

K. S. Hardman, P. J. Everitt, G. D. McDonald, P. Manju, P. B. Wigley, M. A. Sooriyabandara, C. C. N. Kuhn, J. E. Debs, J. D. Close, and N. P. Robins, “Simultaneous precision gravimetry and magnetic gradiometry with a Bose-Einstein condensate: a high precision, quantum sensor,” Phys. Rev. Lett. 117, 138501 (2016).
[Crossref]

G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli, and G. M. Tino, “Measurement of the gravity-field curvature by atom interferometry,” Phys. Rev. Lett. 114, 013001 (2015).
[Crossref]

P. Asenbaum, C. Overstreet, T. Kovachy, D. D. Brown, J. M. Hogan, and M. Kasevich, “Phase shift in an atom interferometer due to spacetime curvature across its wave function,” Phys. Rev. Lett. 118, 183602 (2017).
[Crossref]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997).
[Crossref]

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107, 133001 (2011).
[Crossref]

I. Dutta, D. Savoie, B. Fang, B. Venon, C. L. Garrido Alzar, R. Geiger, and A. Landragin, “Continuous cold-atom inertial sensor with 1  nrad/sec rotation stability,” Phys. Rev. Lett. 116, 183003 (2016).
[Crossref]

L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of equivalence principle at 10−8 level by dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115, 013004 (2015).
[Crossref]

R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, “New determination of the fine structure constant and test of the quantum electrodynamics,” Phys. Rev. Lett. 106, 080801 (2011).
[Crossref]

H. Müller, S.-W. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-interferometry tests of the isotropy of post-Newtonian gravity,” Phys. Rev. Lett. 100, 031101 (2008).
[Crossref]

M. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67, 181–184 (1991).
[Crossref]

H. Ahlers, H. Müntinga, A. Wenzlawski, M. Krutzik, G. Tackmann, S. Abend, N. Gaaloul, E. Giese, A. Roura, R. Kuhl, C. Lämmerzahl, A. Peters, P. Windpassinger, K. Sengstock, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Double Bragg interferometry,” Phys. Rev. Lett. 116, 173601 (2016).
[Crossref]

Rev. Mod. Phys. (1)

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

M.-K. Zhou, X. Xiong, L.-L. Chen, J.-F. Cui, X.-C. Duan, and Z.-K. Hu, “Note: A three-dimension active vibration isolator for precision atom gravimeters,” Rev. Sci. Instrum. 86, 046108 (2015).
[Crossref]

Sci. Rep. (1)

J. P. McGilligan, P. F. Griffin, R. Elvin, S. J. Ingleby, E. Riis, and A. S. Arnold, “Grating chips for quantum technologies,” Sci. Rep. 7, 834 (2017).
[Crossref]

Science (3)

S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339, 554–557 (2013).
[Crossref]

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315, 74–77 (2007).
[Crossref]

P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, and J. Khoury, “Atom-interferometry constraints on dark energy,” Science 349, 849–851 (2015).
[Crossref]

Other (2)

A. Bonnin, C. Diboune, N. Zahazm, Y. Bidel, M. Cadoret, and A. Bresson, “New concepts of inertial measurements with multi-species atom interferometry,” arXiv:1710.06289 (2017).

D. A. Steck, “Cesium D line data,” http://steck.us/alkalidata/cesiumnumbers.1.6.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Multiaxis AIs in a pyramid. A cold atom cloud is trapped inside a pyramidal mirror with a top angle of 90°. Five pairs of the retro-reflected Raman beams are formed, one along the vertical axis and the other four perpendicular to the pyramidal faces. The two angled Raman pairs in the y-z plane are not shown. The angled Raman beams are approximately 45° to the gravity axis. (b) Space-time trajectories of atoms in the Mach–Zehnder geometry and (c) in the butterfly geometry. A matter wave (blue and orange curves) is coherently split, redirected, and combined by momentum transfer from laser pulses (green waves).

Fig. 2.
Fig. 2.

(a) Laser system. AOM, acousto-optic modulator; EOM, fiber-based electro-optical modulator. A distributed Bragg reflector diode laser is frequency stabilized by polarization spectroscopy. The frequency detuning of the laser is controlled by AOM 1. AOM 2 works as a fast switch and AOM 3 controls the laser intensity to the EOM. The vertical beam is toward the entire pyramid, and the angled beams are toward individual pyramidal faces. The pushing beam is for spatially separating atoms in the two ground states. (b) Timing sequences of single-laser atom interferometry. Both the cooling beam and the blow-way beam are generated by the undeflected laser of AOM 3. Both the repumping beam and the Raman beam are generated by the EOM.

Fig. 3.
Fig. 3.

(a) Energy level scheme of cesium D2 line. The Raman pairs are formed by the carrier ν1 and the first-order sidebands ν2, ν3 from the EOM. (b) Rabi frequency Ωeff, AC Stark shift ΩAC, and single-photon scattering Rsc as functions of single-photon detuning Δ. The Rabi frequency and AC Stark shift are measured by driving two-photon transitions. The measurement uses atoms inside the pyramid, where they see reflections from the four pyramidal faces. This increases ΩAC and Rsc but not Ωeff. The scattering rate Rsc3 is measured as the number of atoms that are transferred from F=3 to F=4 when the Raman detuning is off the two-photon resonance. Each point is a single experimental shot and the curves are the theory predictions.

Fig. 4.
Fig. 4.

Acceleration-sensitive fringes of Mach–Zehnder AIs. The vertical AI has a sequence time of 2T=80  ms. The angled AIs have a sequence time of 2T=40  ms. Each point is the average by 10 experimental shots. The curves are sinusoidal fits.

Fig. 5.
Fig. 5.

(a) Allan deviation of the vertical AI corrected from Earth’s tides. The dashed line shows the 1/Hz scaling. (b) Tide gravity variation. It was measured from August 7, 2017 to August 10, 2017 by the vertical AI, compared with a tidal model. Each data point is averaged for about 30 min.

Fig. 6.
Fig. 6.

Relative projected gravity measured by one of the angled AIs. Each data point is from one fringe, which consists of 11 shots. The orange curve shows the tilt measured by a commercial sensor.

Fig. 7.
Fig. 7.

(a) Rotation-sensitive fringes of a butterfly AI along the angled axis. The two fringes are obtained with opposite effective wave vectors. The sequence time is 2T=40  ms. Each point is the average by 10 experimental shots. The curves are sinusoidal fits. (b) Allan deviation of the gyroscope sensitivity. The dashed line shows the 1/N scaling, where N is the averaging fringe number.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕa=k·(a+g)T2,
ϕΩ=12k·[(a+g)×Ω]T3.
Ωeff=F=25n=M3,0F,AnM4,0F,+An+12Δ3,
ΩAC=F,n(|M3,0F,An|24Δ3|M4,0F,+An|24Δ4),
RscF=F,nΓ(MF,0F,An)2Γ2+2(MF,0F,An)2+4(ΔF)2.