Abstract

Mechanically flexible photonic devices are essential building blocks for novel bio-integrated optoelectronic systems, wearable sensors, and flexible consumer electronics. Here we describe the design and experimental demonstration of high-performance flexible semiconductor nanomembrane photodetectors integrated with single-mode chalcogenide glass waveguides. Through a combination of a waveguide-integrated architecture to enhance light–matter interactions and mechanical engineering of multilayer configurations to suppress strains, the detector devices exhibit record optical and mechanical performance. The devices feature a noise equivalent power as low as 0.02  pW·Hz1/2, a linear dynamic range exceeding 70 dB, and a 3-dB bandwidth of 1.4 GHz, all measured at 1530 nm wavelength. The devices withstand 1000 bending cycles at a submillimeter radius without degradation in their optoelectronic responses. These metrics represent significant improvements over state-of-the-art flexible photodetectors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding

Long Chen, Po Dong, and Michal Lipson
Opt. Express 16(15) 11513-11518 (2008)

High performance, waveguide integrated Ge photodetectors

Donghwan Ahn, Ching-yin Hong, Jifeng Liu, Wojciech Giziewicz, Mark Beals, Lionel C. Kimerling, Jurgen Michel, Jian Chen, and Franz X. Kärtner
Opt. Express 15(7) 3916-3921 (2007)

High responsivity, low dark current, heterogeneously integrated thin film Si photodetectors on rigid and flexible substrates

Sulochana Dhar, David M. Miller, and Nan M. Jokerst
Opt. Express 22(5) 5052-5059 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
    [Crossref]
  2. R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. DeShazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31, 3915–3926 (2013).
    [Crossref]
  3. L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N.-N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects,” J. Lightwave Technol. 31, 4080–4086 (2013).
    [Crossref]
  4. J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible shear sensor based on embedded optoelectronic components,” IEEE Photon. Technol. Lett. 23, 771–773 (2011).
    [Crossref]
  5. L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Opt. Express 20, 20564–20575 (2012).
    [Crossref]
  6. S. Yun, S. Park, B. Park, Y. Kim, S. K. Park, S. Nam, and K. U. Kyung, “Polymer‐waveguide‐based flexible tactile sensor array for dynamic response,” Adv. Mater. 26, 4474–4480 (2014).
    [Crossref]
  7. H. Zhao, K. O’Brien, S. Li, and R. F. Shepherd, “Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides,” Science Robotics 1, eaai7529 (2016).
    [Crossref]
  8. T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
    [Crossref]
  9. J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
    [Crossref]
  10. S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
    [Crossref]
  11. M. Humar, S. J. Kwok, M. Choi, A. K. Yetisen, S. Cho, and S.-H. Yun, “Toward biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
    [Crossref]
  12. M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
    [Crossref]
  13. Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
    [Crossref]
  14. C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
    [Crossref]
  15. Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
    [Crossref]
  16. S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527–2541 (2016).
    [Crossref]
  17. S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
    [Crossref]
  18. R. Bruck, P. Muellner, N. Kataeva, A. Koeck, S. Trassl, V. Rinnerbauer, K. Schmidegg, and R. Hainberger, “Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process,” Appl. Opt. 52, 4510–4514 (2013).
    [Crossref]
  19. H. J. Kang, T. Kim, and M. Y. Jeong, “PLC devices fabricated on flexible plastic substrate by roll-to-roll imprint lithography,” J. Microelectron. Electron. Packag. 22, 25–29 (2015).
    [Crossref]
  20. R. Eckstein, T. Rodlmeier, T. Glaser, S. Valouch, R. Mauer, U. Lemmer, and G. Hernandez-Sosa, “Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient,” Adv. Electron. Mater. 1, 1500101 (2015).
    [Crossref]
  21. G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
    [Crossref]
  22. H. Kong, J. Sinha, D. Hoeft, S. B. Kirschner, D. H. Reich, and H. E. Katz, “Solution processable organic p-n junction bilayer vertical photodiodes,” Org. Electron. 14, 703–710 (2013).
    [Crossref]
  23. T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92, 213303 (2008).
    [Crossref]
  24. S. Zhang, L. Cai, T. Wang, J. Miao, N. Sepulveda, and C. Wang, “Fully printed flexible carbon nanotube photodetectors,” Appl. Phys. Lett. 110123105 (2017).
    [Crossref]
  25. S. Lim, D. S. Um, M. Ha, Q. P. Zhang, Y. Lee, Y. J. Lin, Z. Y. Fan, and H. Ko, “Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes,” Nano Res. 10, 22–36 (2017).
    [Crossref]
  26. X. M. Xie and G. Z. Shen, “Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse,” Nanoscale 7, 5046–5052 (2015).
    [Crossref]
  27. G. Yu, Z. Liu, X. M. Xie, X. Ouyang, and G. Z. Shen, “Flexible photodetectors with single-crystalline GaTe nanowires,” J. Mater. Chem. C 2, 6104–6110 (2014).
    [Crossref]
  28. G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
    [Crossref]
  29. Z. Liu, G. Chen, B. Liang, G. Yu, H. T. Huang, D. Chen, and G. Z. Shen, “Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors,” Opt. Express 21, 7799–7810 (2013).
    [Crossref]
  30. K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
    [Crossref]
  31. Z. Q. Zheng, T. M. Zhang, J. D. Yao, Y. Zhang, J. R. Xu, and G. W. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
    [Crossref]
  32. D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
    [Crossref]
  33. D. B. Velusamy, M. A. Haque, M. R. Parida, F. Zhang, T. Wu, O. F. Mohammed, and H. N. Alshareef, “2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors,” Adv. Funct. Mater. 27, 1605554 (2017).
    [Crossref]
  34. K. K. Manga, J. Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids,” Adv. Mater. 24, 1697–1702 (2012).
    [Crossref]
  35. S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, and G. Shi, “A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite,” Adv. Mater. 28, 5969–5974 (2016).
    [Crossref]
  36. J. B. Li, Y. L. Shen, Y. C. Liu, F. Shi, X. D. Ren, T. Q. Niu, K. Zhao, and S. Z. F. Liu, “Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite,” ACS Appl. Mater. Interfaces 9, 19176–19183 (2017).
    [Crossref]
  37. W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
    [Crossref]
  38. X. Hu, X. D. Zhang, L. Liang, J. Bao, S. Li, W. L. Yang, and Y. Xie, “High-performance flexible broadband photodetector based on organolead halide perovskite,” Adv. Funct. Mater. 24, 7373–7380 (2014).
    [Crossref]
  39. M. Kim, J. H. Seo, Z. F. Yu, W. D. Zhou, and Z. Q. Ma, “Flexible germanium nanomembrane metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 109, 051105 (2016).
    [Crossref]
  40. D. J. Fan, K. Lee, and S. R. Forres, “Flexible thin-film InGaAs photodiode focal plane array,” ACS Photon. 3, 670–676 (2016).
    [Crossref]
  41. J. H. Seo, K. Zhang, M. Kim, D. Y. Zhao, H. J. Yang, W. D. Zhou, and Z. Q. Ma, “Flexible phototransistors based on single-crystalline silicon nanomembranes,” Adv. Opt. Mater. 4, 120–125 (2016).
    [Crossref]
  42. W. Q. Yang, H. J. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref, and W. D. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96, 121107 (2010).
    [Crossref]
  43. H. C. Yuan, J. H. Shin, G. X. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Q. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94, 013102 (2009).
    [Crossref]
  44. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
    [Crossref]
  45. L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
    [Crossref]
  46. Y. Shi, J. A. Rogers, C. Gao, and Y. Huang, “Multiple neutral axes in bending of a multiple-layer beam with extremely different elastic properties,” J. Appl. Mech. 81, 114501 (2014).
    [Crossref]
  47. D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15, 3916–3921 (2007).
    [Crossref]
  48. J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22, 4168–4179 (2014).
    [Crossref]
  49. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22, 2168–2176 (2004).
    [Crossref]
  50. D. Guidotti, J. Yu, M. Blaser, V. Grundlehner, and G.-K. Chang, “Edge viewing photodetectors for strictly in-plane lightwave circuit integration and flexible optical interconnects,” in 56th Electronic Components and Technology Conference (IEEE, 2006), p. 7.
  51. H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).
  52. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
    [Crossref]
  53. J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798–11807 (2007).
    [Crossref]
  54. K. Brennan, “Theory of the steady‐state hole drift velocity in InGaAs,” Appl. Phys. Lett. 51, 995–997 (1987).
    [Crossref]
  55. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).

2017 (5)

M. Humar, S. J. Kwok, M. Choi, A. K. Yetisen, S. Cho, and S.-H. Yun, “Toward biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

S. Zhang, L. Cai, T. Wang, J. Miao, N. Sepulveda, and C. Wang, “Fully printed flexible carbon nanotube photodetectors,” Appl. Phys. Lett. 110123105 (2017).
[Crossref]

S. Lim, D. S. Um, M. Ha, Q. P. Zhang, Y. Lee, Y. J. Lin, Z. Y. Fan, and H. Ko, “Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes,” Nano Res. 10, 22–36 (2017).
[Crossref]

D. B. Velusamy, M. A. Haque, M. R. Parida, F. Zhang, T. Wu, O. F. Mohammed, and H. N. Alshareef, “2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors,” Adv. Funct. Mater. 27, 1605554 (2017).
[Crossref]

J. B. Li, Y. L. Shen, Y. C. Liu, F. Shi, X. D. Ren, T. Q. Niu, K. Zhao, and S. Z. F. Liu, “Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite,” ACS Appl. Mater. Interfaces 9, 19176–19183 (2017).
[Crossref]

2016 (12)

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, and G. Shi, “A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite,” Adv. Mater. 28, 5969–5974 (2016).
[Crossref]

Z. Q. Zheng, T. M. Zhang, J. D. Yao, Y. Zhang, J. R. Xu, and G. W. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref]

M. Kim, J. H. Seo, Z. F. Yu, W. D. Zhou, and Z. Q. Ma, “Flexible germanium nanomembrane metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 109, 051105 (2016).
[Crossref]

D. J. Fan, K. Lee, and S. R. Forres, “Flexible thin-film InGaAs photodiode focal plane array,” ACS Photon. 3, 670–676 (2016).
[Crossref]

J. H. Seo, K. Zhang, M. Kim, D. Y. Zhao, H. J. Yang, W. D. Zhou, and Z. Q. Ma, “Flexible phototransistors based on single-crystalline silicon nanomembranes,” Adv. Opt. Mater. 4, 120–125 (2016).
[Crossref]

S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527–2541 (2016).
[Crossref]

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

H. Zhao, K. O’Brien, S. Li, and R. F. Shepherd, “Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides,” Science Robotics 1, eaai7529 (2016).
[Crossref]

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

2015 (5)

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

X. M. Xie and G. Z. Shen, “Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse,” Nanoscale 7, 5046–5052 (2015).
[Crossref]

H. J. Kang, T. Kim, and M. Y. Jeong, “PLC devices fabricated on flexible plastic substrate by roll-to-roll imprint lithography,” J. Microelectron. Electron. Packag. 22, 25–29 (2015).
[Crossref]

R. Eckstein, T. Rodlmeier, T. Glaser, S. Valouch, R. Mauer, U. Lemmer, and G. Hernandez-Sosa, “Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient,” Adv. Electron. Mater. 1, 1500101 (2015).
[Crossref]

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

2014 (9)

Y. Shi, J. A. Rogers, C. Gao, and Y. Huang, “Multiple neutral axes in bending of a multiple-layer beam with extremely different elastic properties,” J. Appl. Mech. 81, 114501 (2014).
[Crossref]

J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22, 4168–4179 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

X. Hu, X. D. Zhang, L. Liang, J. Bao, S. Li, W. L. Yang, and Y. Xie, “High-performance flexible broadband photodetector based on organolead halide perovskite,” Adv. Funct. Mater. 24, 7373–7380 (2014).
[Crossref]

G. Yu, Z. Liu, X. M. Xie, X. Ouyang, and G. Z. Shen, “Flexible photodetectors with single-crystalline GaTe nanowires,” J. Mater. Chem. C 2, 6104–6110 (2014).
[Crossref]

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

S. Yun, S. Park, B. Park, Y. Kim, S. K. Park, S. Nam, and K. U. Kyung, “Polymer‐waveguide‐based flexible tactile sensor array for dynamic response,” Adv. Mater. 26, 4474–4480 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

2013 (7)

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

R. Bruck, P. Muellner, N. Kataeva, A. Koeck, S. Trassl, V. Rinnerbauer, K. Schmidegg, and R. Hainberger, “Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process,” Appl. Opt. 52, 4510–4514 (2013).
[Crossref]

R. Dangel, F. Horst, D. Jubin, N. Meier, J. Weiss, B. J. Offrein, B. W. Swatowski, C. M. Amb, D. J. DeShazer, and W. K. Weidner, “Development of versatile polymer waveguide flex technology for use in optical interconnects,” J. Lightwave Technol. 31, 3915–3926 (2013).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N.-N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects,” J. Lightwave Technol. 31, 4080–4086 (2013).
[Crossref]

Z. Liu, G. Chen, B. Liang, G. Yu, H. T. Huang, D. Chen, and G. Z. Shen, “Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors,” Opt. Express 21, 7799–7810 (2013).
[Crossref]

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

H. Kong, J. Sinha, D. Hoeft, S. B. Kirschner, D. H. Reich, and H. E. Katz, “Solution processable organic p-n junction bilayer vertical photodiodes,” Org. Electron. 14, 703–710 (2013).
[Crossref]

2012 (4)

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

K. K. Manga, J. Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids,” Adv. Mater. 24, 1697–1702 (2012).
[Crossref]

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Opt. Express 20, 20564–20575 (2012).
[Crossref]

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

2011 (1)

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible shear sensor based on embedded optoelectronic components,” IEEE Photon. Technol. Lett. 23, 771–773 (2011).
[Crossref]

2010 (2)

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[Crossref]

W. Q. Yang, H. J. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref, and W. D. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96, 121107 (2010).
[Crossref]

2009 (1)

H. C. Yuan, J. H. Shin, G. X. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Q. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94, 013102 (2009).
[Crossref]

2008 (1)

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92, 213303 (2008).
[Crossref]

2007 (3)

2004 (1)

1987 (1)

K. Brennan, “Theory of the steady‐state hole drift velocity in InGaAs,” Appl. Phys. Lett. 51, 995–997 (1987).
[Crossref]

Agarwal, A.

Ahn, D.

Aikio, S.

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527–2541 (2016).
[Crossref]

Alshareef, H. N.

D. B. Velusamy, M. A. Haque, M. R. Parida, F. Zhang, T. Wu, O. F. Mohammed, and H. N. Alshareef, “2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors,” Adv. Funct. Mater. 27, 1605554 (2017).
[Crossref]

Amb, C. M.

An, S.

H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).

Andriessen, R.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Araki, H.

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

Banks, A.

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

Bao, J.

X. Hu, X. D. Zhang, L. Liang, J. Bao, S. Li, W. L. Yang, and Y. Xie, “High-performance flexible broadband photodetector based on organolead halide perovskite,” Adv. Funct. Mater. 24, 7373–7380 (2014).
[Crossref]

Beals, M.

Berggren, J.

W. Q. Yang, H. J. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref, and W. D. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96, 121107 (2010).
[Crossref]

Bhattacharya, P.

H. C. Yuan, J. H. Shin, G. X. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Q. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94, 013102 (2009).
[Crossref]

Birkmire, R.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Blaser, M.

D. Guidotti, J. Yu, M. Blaser, V. Grundlehner, and G.-K. Chang, “Edge viewing photodetectors for strictly in-plane lightwave circuit integration and flexible optical interconnects,” in 56th Electronic Components and Technology Conference (IEEE, 2006), p. 7.

Boreman, G. D.

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).

Bosman, E.

J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22, 4168–4179 (2014).
[Crossref]

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible shear sensor based on embedded optoelectronic components,” IEEE Photon. Technol. Lett. 23, 771–773 (2011).
[Crossref]

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[Crossref]

Brennan, K.

K. Brennan, “Theory of the steady‐state hole drift velocity in InGaAs,” Appl. Phys. Lett. 51, 995–997 (1987).
[Crossref]

Bruck, R.

Cai, L.

S. Zhang, L. Cai, T. Wang, J. Miao, N. Sepulveda, and C. Wang, “Fully printed flexible carbon nanotube photodetectors,” Appl. Phys. Lett. 110123105 (2017).
[Crossref]

Carlie, N.

Celler, G. K.

H. C. Yuan, J. H. Shin, G. X. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Q. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94, 013102 (2009).
[Crossref]

Cha, S.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Chabinyc, M. L.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92, 213303 (2008).
[Crossref]

Chang, G.-K.

D. Guidotti, J. Yu, M. Blaser, V. Grundlehner, and G.-K. Chang, “Edge viewing photodetectors for strictly in-plane lightwave circuit integration and flexible optical interconnects,” in 56th Electronic Components and Technology Conference (IEEE, 2006), p. 7.

Chen, D.

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

Z. Liu, G. Chen, B. Liang, G. Yu, H. T. Huang, D. Chen, and G. Z. Shen, “Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors,” Opt. Express 21, 7799–7810 (2013).
[Crossref]

Chen, G.

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

Z. Liu, G. Chen, B. Liang, G. Yu, H. T. Huang, D. Chen, and G. Z. Shen, “Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors,” Opt. Express 21, 7799–7810 (2013).
[Crossref]

Chen, J.

Chen, R. T.

Chen, S.

S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, and G. Shi, “A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite,” Adv. Mater. 28, 5969–5974 (2016).
[Crossref]

Cheong, H.

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

Chiarelli, A. M.

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

Cho, S.

M. Humar, S. J. Kwok, M. Choi, A. K. Yetisen, S. Cho, and S.-H. Yun, “Toward biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

Cho, S. H.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Cho, S. M.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Choi, C.

Choi, H.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Choi, J.

Choi, J. W.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Choi, M.

M. Humar, S. J. Kwok, M. Choi, A. K. Yetisen, S. Cho, and S.-H. Yun, “Toward biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Dangel, R.

Danto, S.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N.-N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects,” J. Lightwave Technol. 31, 4080–4086 (2013).
[Crossref]

de Leon, N.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

Deng, W.

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Dereniak, E. L.

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).

DeShazer, D. J.

Ding, J.

H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).

Dobson, K. D.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Douglas, A.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Du, Q.

H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).

Du, Q. Y.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Eckstein, R.

R. Eckstein, T. Rodlmeier, T. Glaser, S. Valouch, R. Mauer, U. Lemmer, and G. Hernandez-Sosa, “Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient,” Adv. Electron. Mater. 1, 1500101 (2015).
[Crossref]

Fan, D. J.

D. J. Fan, K. Lee, and S. R. Forres, “Flexible thin-film InGaAs photodiode focal plane array,” ACS Photon. 3, 670–676 (2016).
[Crossref]

Fan, L.

Fan, Z. Y.

S. Lim, D. S. Um, M. Ha, Q. P. Zhang, Y. Lee, Y. J. Lin, Z. Y. Fan, and H. Ko, “Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes,” Nano Res. 10, 22–36 (2017).
[Crossref]

Feng, N. N.

Feng, N.-N.

Forres, S. R.

D. J. Fan, K. Lee, and S. R. Forres, “Flexible thin-film InGaAs photodiode focal plane array,” ACS Photon. 3, 670–676 (2016).
[Crossref]

Frank, I. W.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

Gao, C.

Y. Shi, J. A. Rogers, C. Gao, and Y. Huang, “Multiple neutral axes in bending of a multiple-layer beam with extremely different elastic properties,” J. Appl. Mech. 81, 114501 (2014).
[Crossref]

Gather, M. C.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

Geiger, S. J.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

Gelinck, G. H.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Giziewicz, W.

Glaser, T.

R. Eckstein, T. Rodlmeier, T. Glaser, S. Valouch, R. Mauer, U. Lemmer, and G. Hernandez-Sosa, “Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient,” Adv. Electron. Mater. 1, 1500101 (2015).
[Crossref]

Grundlehner, V.

D. Guidotti, J. Yu, M. Blaser, V. Grundlehner, and G.-K. Chang, “Edge viewing photodetectors for strictly in-plane lightwave circuit integration and flexible optical interconnects,” in 56th Electronic Components and Technology Conference (IEEE, 2006), p. 7.

Gu, T.

Guidotti, D.

D. Guidotti, J. Yu, M. Blaser, V. Grundlehner, and G.-K. Chang, “Edge viewing photodetectors for strictly in-plane lightwave circuit integration and flexible optical interconnects,” in 56th Electronic Components and Technology Conference (IEEE, 2006), p. 7.

Ha, M.

S. Lim, D. S. Um, M. Ha, Q. P. Zhang, Y. Lee, Y. J. Lin, Z. Y. Fan, and H. Ko, “Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes,” Nano Res. 10, 22–36 (2017).
[Crossref]

Haas, D.

Hahn, S. K.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Hainberger, R.

Hakalahti, L.

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

Hammar, M.

W. Q. Yang, H. J. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref, and W. D. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96, 121107 (2010).
[Crossref]

Haney, M.

Haque, M. A.

D. B. Velusamy, M. A. Haque, M. R. Parida, F. Zhang, T. Wu, O. F. Mohammed, and H. N. Alshareef, “2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors,” Adv. Funct. Mater. 27, 1605554 (2017).
[Crossref]

Heo, K.

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

Heremans, P.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Hernandez-Sosa, G.

R. Eckstein, T. Rodlmeier, T. Glaser, S. Valouch, R. Mauer, U. Lemmer, and G. Hernandez-Sosa, “Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient,” Adv. Electron. Mater. 1, 1500101 (2015).
[Crossref]

Hiitola-Keinänen, J.

S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527–2541 (2016).
[Crossref]

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

Hiltunen, J.

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527–2541 (2016).
[Crossref]

Hiltunen, M.

S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527–2541 (2016).
[Crossref]

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

Hoeft, D.

H. Kong, J. Sinha, D. Hoeft, S. B. Kirschner, D. H. Reich, and H. E. Katz, “Solution processable organic p-n junction bilayer vertical photodiodes,” Org. Electron. 14, 703–710 (2013).
[Crossref]

Hong, C.-Y.

Hong, S.

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

Horst, F.

Hu, J.

Hu, J. J.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798–11807 (2007).
[Crossref]

Hu, X.

X. Hu, X. D. Zhang, L. Liang, J. Bao, S. Li, W. L. Yang, and Y. Xie, “High-performance flexible broadband photodetector based on organolead halide perovskite,” Adv. Funct. Mater. 24, 7373–7380 (2014).
[Crossref]

Huang, H. T.

Huang, L. M.

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Huang, Y.

Y. Shi, J. A. Rogers, C. Gao, and Y. Huang, “Multiple neutral axes in bending of a multiple-layer beam with extremely different elastic properties,” J. Appl. Mech. 81, 114501 (2014).
[Crossref]

Huh, J.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Humar, M.

M. Humar, S. J. Kwok, M. Choi, A. K. Yetisen, S. Cho, and S.-H. Yun, “Toward biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

Hwang, I.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Jang, K.-I.

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

Jeong, M. Y.

H. J. Kang, T. Kim, and M. Y. Jeong, “PLC devices fabricated on flexible plastic substrate by roll-to-roll imprint lithography,” J. Microelectron. Electron. Packag. 22, 25–29 (2015).
[Crossref]

Ji, W.

K. K. Manga, J. Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids,” Adv. Mater. 24, 1697–1702 (2012).
[Crossref]

Jian, J.

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

Jie, J. S.

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Jinno, H.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

Jorritsma, J.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Jubin, D.

Kalathimekkad, S.

J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22, 4168–4179 (2014).
[Crossref]

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible shear sensor based on embedded optoelectronic components,” IEEE Photon. Technol. Lett. 23, 771–773 (2011).
[Crossref]

Kaltenbrunner, M.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

Kang, H. J.

H. J. Kang, T. Kim, and M. Y. Jeong, “PLC devices fabricated on flexible plastic substrate by roll-to-roll imprint lithography,” J. Microelectron. Electron. Packag. 22, 25–29 (2015).
[Crossref]

Karioja, P.

Kärtner, F. X.

Kassani, S. H.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Kataeva, N.

Katz, H. E.

H. Kong, J. Sinha, D. Hoeft, S. B. Kirschner, D. H. Reich, and H. E. Katz, “Solution processable organic p-n junction bilayer vertical photodiodes,” Org. Electron. 14, 703–710 (2013).
[Crossref]

Khazaeinezhad, R.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Kim, H.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

Kim, J.

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

Kim, K. S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

Kim, M.

J. H. Seo, K. Zhang, M. Kim, D. Y. Zhao, H. J. Yang, W. D. Zhou, and Z. Q. Ma, “Flexible phototransistors based on single-crystalline silicon nanomembranes,” Adv. Opt. Mater. 4, 120–125 (2016).
[Crossref]

M. Kim, J. H. Seo, Z. F. Yu, W. D. Zhou, and Z. Q. Ma, “Flexible germanium nanomembrane metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 109, 051105 (2016).
[Crossref]

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

Kim, R. H.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Kim, S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Kim, T.

H. J. Kang, T. Kim, and M. Y. Jeong, “PLC devices fabricated on flexible plastic substrate by roll-to-roll imprint lithography,” J. Microelectron. Electron. Packag. 22, 25–29 (2015).
[Crossref]

Kim, Y.

S. Yun, S. Park, B. Park, Y. Kim, S. K. Park, S. Nam, and K. U. Kyung, “Polymer‐waveguide‐based flexible tactile sensor array for dynamic response,” Adv. Mater. 26, 4474–4480 (2014).
[Crossref]

Kimerling, L.

Kimerling, L. C.

Kirschner, S. B.

H. Kong, J. Sinha, D. Hoeft, S. B. Kirschner, D. H. Reich, and H. E. Katz, “Solution processable organic p-n junction bilayer vertical photodiodes,” Org. Electron. 14, 703–710 (2013).
[Crossref]

Kitanosako, H.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

Ko, H.

S. Lim, D. S. Um, M. Ha, Q. P. Zhang, Y. Lee, Y. J. Lin, Z. Y. Fan, and H. Ko, “Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes,” Nano Res. 10, 22–36 (2017).
[Crossref]

Koeck, A.

Koizumi, M.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

Kong, H.

H. Kong, J. Sinha, D. Hoeft, S. B. Kirschner, D. H. Reich, and H. E. Katz, “Solution processable organic p-n junction bilayer vertical photodiodes,” Org. Electron. 14, 703–710 (2013).
[Crossref]

Kontturi, V.

S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527–2541 (2016).
[Crossref]

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

Koontz, E.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

Kumar, A.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Kwok, S. J.

M. Humar, S. J. Kwok, M. Choi, A. K. Yetisen, S. Cho, and S.-H. Yun, “Toward biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

Kyung, K. U.

S. Yun, S. Park, B. Park, Y. Kim, S. K. Park, S. Nam, and K. U. Kyung, “Polymer‐waveguide‐based flexible tactile sensor array for dynamic response,” Adv. Mater. 26, 4474–4480 (2014).
[Crossref]

Lagally, M. G.

H. C. Yuan, J. H. Shin, G. X. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Q. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94, 013102 (2009).
[Crossref]

Lee, C.

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

Lee, H.

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

Lee, J.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Lee, J. W.

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

Lee, K.

D. J. Fan, K. Lee, and S. R. Forres, “Flexible thin-film InGaAs photodiode focal plane array,” ACS Photon. 3, 670–676 (2016).
[Crossref]

Lee, S. T.

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Lee, Y.

S. Lim, D. S. Um, M. Ha, Q. P. Zhang, Y. Lee, Y. J. Lin, Z. Y. Fan, and H. Ko, “Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes,” Nano Res. 10, 22–36 (2017).
[Crossref]

Lemmer, U.

R. Eckstein, T. Rodlmeier, T. Glaser, S. Valouch, R. Mauer, U. Lemmer, and G. Hernandez-Sosa, “Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient,” Adv. Electron. Mater. 1, 1500101 (2015).
[Crossref]

Li, J. B.

J. B. Li, Y. L. Shen, Y. C. Liu, F. Shi, X. D. Ren, T. Q. Niu, K. Zhao, and S. Z. F. Liu, “Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite,” ACS Appl. Mater. Interfaces 9, 19176–19183 (2017).
[Crossref]

Li, L.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N.-N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects,” J. Lightwave Technol. 31, 4080–4086 (2013).
[Crossref]

Li, S.

H. Zhao, K. O’Brien, S. Li, and R. F. Shepherd, “Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides,” Science Robotics 1, eaai7529 (2016).
[Crossref]

X. Hu, X. D. Zhang, L. Liang, J. Bao, S. Li, W. L. Yang, and Y. Xie, “High-performance flexible broadband photodetector based on organolead halide perovskite,” Adv. Funct. Mater. 24, 7373–7380 (2014).
[Crossref]

Li, Y.

S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, and G. Shi, “A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite,” Adv. Mater. 28, 5969–5974 (2016).
[Crossref]

Liang, B.

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

Z. Liu, G. Chen, B. Liang, G. Yu, H. T. Huang, D. Chen, and G. Z. Shen, “Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors,” Opt. Express 21, 7799–7810 (2013).
[Crossref]

Liang, L.

X. Hu, X. D. Zhang, L. Liang, J. Bao, S. Li, W. L. Yang, and Y. Xie, “High-performance flexible broadband photodetector based on organolead halide perovskite,” Adv. Funct. Mater. 24, 7373–7380 (2014).
[Crossref]

Lieberzeit, P.

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

Lim, H. J.

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

Lim, S.

S. Lim, D. S. Um, M. Ha, Q. P. Zhang, Y. Lee, Y. J. Lin, Z. Y. Fan, and H. Ko, “Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes,” Nano Res. 10, 22–36 (2017).
[Crossref]

Lin, H.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N.-N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects,” J. Lightwave Technol. 31, 4080–4086 (2013).
[Crossref]

H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).

Lin, H. T.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Lin, L.

Lin, M.

K. K. Manga, J. Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids,” Adv. Mater. 24, 1697–1702 (2012).
[Crossref]

Lin, Y. J.

S. Lim, D. S. Um, M. Ha, Q. P. Zhang, Y. Lee, Y. J. Lin, Z. Y. Fan, and H. Ko, “Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes,” Nano Res. 10, 22–36 (2017).
[Crossref]

Liu, J.

Liu, M.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

Liu, S. Z. F.

J. B. Li, Y. L. Shen, Y. C. Liu, F. Shi, X. D. Ren, T. Q. Niu, K. Zhao, and S. Z. F. Liu, “Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite,” ACS Appl. Mater. Interfaces 9, 19176–19183 (2017).
[Crossref]

Liu, Y.

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22, 2168–2176 (2004).
[Crossref]

Liu, Y. C.

J. B. Li, Y. L. Shen, Y. C. Liu, F. Shi, X. D. Ren, T. Q. Niu, K. Zhao, and S. Z. F. Liu, “Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite,” ACS Appl. Mater. Interfaces 9, 19176–19183 (2017).
[Crossref]

Liu, Z.

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

G. Yu, Z. Liu, X. M. Xie, X. Ouyang, and G. Z. Shen, “Flexible photodetectors with single-crystalline GaTe nanowires,” J. Mater. Chem. C 2, 6104–6110 (2014).
[Crossref]

Z. Liu, G. Chen, B. Liang, G. Yu, H. T. Huang, D. Chen, and G. Z. Shen, “Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors,” Opt. Express 21, 7799–7810 (2013).
[Crossref]

Loh, K. P.

K. K. Manga, J. Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids,” Adv. Mater. 24, 1697–1702 (2012).
[Crossref]

Loncar, M.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Lukin, M. D.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

Luo, T.

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

Ma, Z. Q.

M. Kim, J. H. Seo, Z. F. Yu, W. D. Zhou, and Z. Q. Ma, “Flexible germanium nanomembrane metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 109, 051105 (2016).
[Crossref]

J. H. Seo, K. Zhang, M. Kim, D. Y. Zhao, H. J. Yang, W. D. Zhou, and Z. Q. Ma, “Flexible phototransistors based on single-crystalline silicon nanomembranes,” Adv. Opt. Mater. 4, 120–125 (2016).
[Crossref]

W. Q. Yang, H. J. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref, and W. D. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96, 121107 (2010).
[Crossref]

H. C. Yuan, J. H. Shin, G. X. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Q. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94, 013102 (2009).
[Crossref]

Magera, J.

Malinowski, P. E.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Manga, K. K.

K. K. Manga, J. Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids,” Adv. Mater. 24, 1697–1702 (2012).
[Crossref]

Matsuhisa, N.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

Mauer, R.

R. Eckstein, T. Rodlmeier, T. Glaser, S. Valouch, R. Mauer, U. Lemmer, and G. Hernandez-Sosa, “Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient,” Adv. Electron. Mater. 1, 1500101 (2015).
[Crossref]

McCutcheon, M.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

Meier, N.

Miao, J.

S. Zhang, L. Cai, T. Wang, J. Miao, N. Sepulveda, and C. Wang, “Fully printed flexible carbon nanotube photodetectors,” Appl. Phys. Lett. 110123105 (2017).
[Crossref]

Michel, J.

Michon, J.

H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).

Missinne, J.

J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22, 4168–4179 (2014).
[Crossref]

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible shear sensor based on embedded optoelectronic components,” IEEE Photon. Technol. Lett. 23, 771–773 (2011).
[Crossref]

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[Crossref]

Moet, D.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Mohammed, O. F.

D. B. Velusamy, M. A. Haque, M. R. Parida, F. Zhang, T. Wu, O. F. Mohammed, and H. N. Alshareef, “2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors,” Adv. Funct. Mater. 27, 1605554 (2017).
[Crossref]

Moreel, L.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

Muellner, P.

Musgraves, J. D.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Myny, K.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Nalla, V.

K. K. Manga, J. Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids,” Adv. Mater. 24, 1697–1702 (2012).
[Crossref]

Nam, S.

S. Yun, S. Park, B. Park, Y. Kim, S. K. Park, S. Nam, and K. U. Kyung, “Polymer‐waveguide‐based flexible tactile sensor array for dynamic response,” Adv. Mater. 26, 4474–4480 (2014).
[Crossref]

Nesladek, M.

K. K. Manga, J. Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids,” Adv. Mater. 24, 1697–1702 (2012).
[Crossref]

Ng, T. N.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92, 213303 (2008).
[Crossref]

Niu, B.

Niu, T. Q.

J. B. Li, Y. L. Shen, Y. C. Liu, F. Shi, X. D. Ren, T. Q. Niu, K. Zhao, and S. Z. F. Liu, “Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite,” ACS Appl. Mater. Interfaces 9, 19176–19183 (2017).
[Crossref]

Nizamoglu, S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

O’Brien, K.

H. Zhao, K. O’Brien, S. Li, and R. F. Shepherd, “Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides,” Science Robotics 1, eaai7529 (2016).
[Crossref]

Offrein, B. J.

Ogbuu, O.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Oh, K.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Ouyang, X.

G. Yu, Z. Liu, X. M. Xie, X. Ouyang, and G. Z. Shen, “Flexible photodetectors with single-crystalline GaTe nanowires,” J. Mater. Chem. C 2, 6104–6110 (2014).
[Crossref]

Parida, M. R.

D. B. Velusamy, M. A. Haque, M. R. Parida, F. Zhang, T. Wu, O. F. Mohammed, and H. N. Alshareef, “2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors,” Adv. Funct. Mater. 27, 1605554 (2017).
[Crossref]

Park, B.

S. Yun, S. Park, B. Park, Y. Kim, S. K. Park, S. Nam, and K. U. Kyung, “Polymer‐waveguide‐based flexible tactile sensor array for dynamic response,” Adv. Mater. 26, 4474–4480 (2014).
[Crossref]

Park, C.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Park, H.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

Park, J.

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

Park, S.

S. Yun, S. Park, B. Park, Y. Kim, S. K. Park, S. Nam, and K. U. Kyung, “Polymer‐waveguide‐based flexible tactile sensor array for dynamic response,” Adv. Mater. 26, 4474–4480 (2014).
[Crossref]

Park, S. K.

S. Yun, S. Park, B. Park, Y. Kim, S. K. Park, S. Nam, and K. U. Kyung, “Polymer‐waveguide‐based flexible tactile sensor array for dynamic response,” Adv. Mater. 26, 4474–4480 (2014).
[Crossref]

Park, Y.

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

Petit, L.

Puustinen, J.

S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527–2541 (2016).
[Crossref]

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

Qi, M.

Qiao, S.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Qin, G. X.

W. Q. Yang, H. J. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref, and W. D. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96, 121107 (2010).
[Crossref]

H. C. Yuan, J. H. Shin, G. X. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Q. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94, 013102 (2009).
[Crossref]

Rand, B. P.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Randolph, M.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

Redmond, R. W.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

Reich, D. H.

H. Kong, J. Sinha, D. Hoeft, S. B. Kirschner, D. H. Reich, and H. E. Katz, “Solution processable organic p-n junction bilayer vertical photodiodes,” Org. Electron. 14, 703–710 (2013).
[Crossref]

Ren, X. D.

J. B. Li, Y. L. Shen, Y. C. Liu, F. Shi, X. D. Ren, T. Q. Niu, K. Zhao, and S. Z. F. Liu, “Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite,” ACS Appl. Mater. Interfaces 9, 19176–19183 (2017).
[Crossref]

Richardson, K.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N.-N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects,” J. Lightwave Technol. 31, 4080–4086 (2013).
[Crossref]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798–11807 (2007).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
[Crossref]

Rinnerbauer, V.

Robinson, J. T.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

Rodlmeier, T.

R. Eckstein, T. Rodlmeier, T. Glaser, S. Valouch, R. Mauer, U. Lemmer, and G. Hernandez-Sosa, “Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient,” Adv. Electron. Mater. 1, 1500101 (2015).
[Crossref]

Rogers, J. A.

Y. Shi, J. A. Rogers, C. Gao, and Y. Huang, “Multiple neutral axes in bending of a multiple-layer beam with extremely different elastic properties,” J. Appl. Mech. 81, 114501 (2014).
[Crossref]

Rutten, W.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Salvatore, G. A.

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

Sambandan, S.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92, 213303 (2008).
[Crossref]

Scarcelli, G.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

Schmidegg, K.

Seo, J. H.

J. H. Seo, K. Zhang, M. Kim, D. Y. Zhao, H. J. Yang, W. D. Zhou, and Z. Q. Ma, “Flexible phototransistors based on single-crystalline silicon nanomembranes,” Adv. Opt. Mater. 4, 120–125 (2016).
[Crossref]

M. Kim, J. H. Seo, Z. F. Yu, W. D. Zhou, and Z. Q. Ma, “Flexible germanium nanomembrane metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 109, 051105 (2016).
[Crossref]

Sepulveda, N.

S. Zhang, L. Cai, T. Wang, J. Miao, N. Sepulveda, and C. Wang, “Fully printed flexible carbon nanotube photodetectors,” Appl. Phys. Lett. 110123105 (2017).
[Crossref]

Shafique, U.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Shang, Q. X.

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Shen, G. Z.

X. M. Xie and G. Z. Shen, “Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse,” Nanoscale 7, 5046–5052 (2015).
[Crossref]

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

G. Yu, Z. Liu, X. M. Xie, X. Ouyang, and G. Z. Shen, “Flexible photodetectors with single-crystalline GaTe nanowires,” J. Mater. Chem. C 2, 6104–6110 (2014).
[Crossref]

Z. Liu, G. Chen, B. Liang, G. Yu, H. T. Huang, D. Chen, and G. Z. Shen, “Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors,” Opt. Express 21, 7799–7810 (2013).
[Crossref]

Shen, Y. L.

J. B. Li, Y. L. Shen, Y. C. Liu, F. Shi, X. D. Ren, T. Q. Niu, K. Zhao, and S. Z. F. Liu, “Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite,” ACS Appl. Mater. Interfaces 9, 19176–19183 (2017).
[Crossref]

Sheng, X.

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

Shepherd, R. F.

H. Zhao, K. O’Brien, S. Li, and R. F. Shepherd, “Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides,” Science Robotics 1, eaai7529 (2016).
[Crossref]

Shi, F.

J. B. Li, Y. L. Shen, Y. C. Liu, F. Shi, X. D. Ren, T. Q. Niu, K. Zhao, and S. Z. F. Liu, “Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite,” ACS Appl. Mater. Interfaces 9, 19176–19183 (2017).
[Crossref]

Shi, G.

S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, and G. Shi, “A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite,” Adv. Mater. 28, 5969–5974 (2016).
[Crossref]

Shi, Y.

Y. Shi, J. A. Rogers, C. Gao, and Y. Huang, “Multiple neutral axes in bending of a multiple-layer beam with extremely different elastic properties,” J. Appl. Mech. 81, 114501 (2014).
[Crossref]

Shin, J. H.

H. C. Yuan, J. H. Shin, G. X. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Q. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94, 013102 (2009).
[Crossref]

Siitonen, S.

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527–2541 (2016).
[Crossref]

Simon, M.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Sinha, J.

H. Kong, J. Sinha, D. Hoeft, S. B. Kirschner, D. H. Reich, and H. E. Katz, “Solution processable organic p-n junction bilayer vertical photodiodes,” Org. Electron. 14, 703–710 (2013).
[Crossref]

Someya, T.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

Song, G.

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Soref, R.

W. Q. Yang, H. J. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref, and W. D. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96, 121107 (2010).
[Crossref]

Street, R. A.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92, 213303 (2008).
[Crossref]

Sun, L.

H. C. Yuan, J. H. Shin, G. X. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Q. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94, 013102 (2009).
[Crossref]

Sun, X.

Swatowski, B. W.

Tachibana, Y.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

Tarasov, V.

Teng, C.

S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, and G. Shi, “A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite,” Adv. Mater. 28, 5969–5974 (2016).
[Crossref]

Trassl, S.

Um, D. S.

S. Lim, D. S. Um, M. Ha, Q. P. Zhang, Y. Lee, Y. J. Lin, Z. Y. Fan, and H. Ko, “Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes,” Nano Res. 10, 22–36 (2017).
[Crossref]

Valouch, S.

R. Eckstein, T. Rodlmeier, T. Glaser, S. Valouch, R. Mauer, U. Lemmer, and G. Hernandez-Sosa, “Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient,” Adv. Electron. Mater. 1, 1500101 (2015).
[Crossref]

Van Daele, P.

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible shear sensor based on embedded optoelectronic components,” IEEE Photon. Technol. Lett. 23, 771–773 (2011).
[Crossref]

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[Crossref]

van der Steen, J. L.

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

Van Hoe, B.

J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22, 4168–4179 (2014).
[Crossref]

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible shear sensor based on embedded optoelectronic components,” IEEE Photon. Technol. Lett. 23, 771–773 (2011).
[Crossref]

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[Crossref]

Van Steenberge, G.

J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22, 4168–4179 (2014).
[Crossref]

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible shear sensor based on embedded optoelectronic components,” IEEE Photon. Technol. Lett. 23, 771–773 (2011).
[Crossref]

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[Crossref]

Vanfleteren, J.

J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22, 4168–4179 (2014).
[Crossref]

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible shear sensor based on embedded optoelectronic components,” IEEE Photon. Technol. Lett. 23, 771–773 (2011).
[Crossref]

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[Crossref]

Varghese, L. T.

Velusamy, D. B.

D. B. Velusamy, M. A. Haque, M. R. Parida, F. Zhang, T. Wu, O. F. Mohammed, and H. N. Alshareef, “2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors,” Adv. Funct. Mater. 27, 1605554 (2017).
[Crossref]

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

Wang, C.

S. Zhang, L. Cai, T. Wang, J. Miao, N. Sepulveda, and C. Wang, “Fully printed flexible carbon nanotube photodetectors,” Appl. Phys. Lett. 110123105 (2017).
[Crossref]

Wang, J.

Wang, J. C.

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Wang, J. Z.

K. K. Manga, J. Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids,” Adv. Mater. 24, 1697–1702 (2012).
[Crossref]

Wang, L.

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22, 2168–2176 (2004).
[Crossref]

Wang, T.

S. Zhang, L. Cai, T. Wang, J. Miao, N. Sepulveda, and C. Wang, “Fully printed flexible carbon nanotube photodetectors,” Appl. Phys. Lett. 110123105 (2017).
[Crossref]

Wang, W.-M.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

Weidner, W. K.

Weiss, J.

Wong, W. S.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92, 213303 (2008).
[Crossref]

Wu, T.

D. B. Velusamy, M. A. Haque, M. R. Parida, F. Zhang, T. Wu, O. F. Mohammed, and H. N. Alshareef, “2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors,” Adv. Funct. Mater. 27, 1605554 (2017).
[Crossref]

Xiao, N.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

Xie, D.

S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, and G. Shi, “A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite,” Adv. Mater. 28, 5969–5974 (2016).
[Crossref]

Xie, X. M.

X. M. Xie and G. Z. Shen, “Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse,” Nanoscale 7, 5046–5052 (2015).
[Crossref]

G. Yu, Z. Liu, X. M. Xie, X. Ouyang, and G. Z. Shen, “Flexible photodetectors with single-crystalline GaTe nanowires,” J. Mater. Chem. C 2, 6104–6110 (2014).
[Crossref]

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

Xie, Y.

X. Hu, X. D. Zhang, L. Liang, J. Bao, S. Li, W. L. Yang, and Y. Xie, “High-performance flexible broadband photodetector based on organolead halide perovskite,” Adv. Funct. Mater. 24, 7373–7380 (2014).
[Crossref]

Xie, Z.

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

Xu, J. R.

Z. Q. Zheng, T. M. Zhang, J. D. Yao, Y. Zhang, J. R. Xu, and G. W. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref]

Xu, X. Z.

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Xuan, Y.

Yang, G. W.

Z. Q. Zheng, T. M. Zhang, J. D. Yao, Y. Zhang, J. R. Xu, and G. W. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref]

Yang, H. J.

J. H. Seo, K. Zhang, M. Kim, D. Y. Zhao, H. J. Yang, W. D. Zhou, and Z. Q. Ma, “Flexible phototransistors based on single-crystalline silicon nanomembranes,” Adv. Opt. Mater. 4, 120–125 (2016).
[Crossref]

W. Q. Yang, H. J. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref, and W. D. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96, 121107 (2010).
[Crossref]

Yang, W. L.

X. Hu, X. D. Zhang, L. Liang, J. Bao, S. Li, W. L. Yang, and Y. Xie, “High-performance flexible broadband photodetector based on organolead halide perovskite,” Adv. Funct. Mater. 24, 7373–7380 (2014).
[Crossref]

Yang, W. Q.

W. Q. Yang, H. J. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref, and W. D. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96, 121107 (2010).
[Crossref]

Yao, J. D.

Z. Q. Zheng, T. M. Zhang, J. D. Yao, Y. Zhang, J. R. Xu, and G. W. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref]

Yetisen, A. K.

M. Humar, S. J. Kwok, M. Choi, A. K. Yetisen, S. Cho, and S.-H. Yun, “Toward biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

Yin, G.

H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).

Yokota, T.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

Yoon, D.

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

Yu, C. L.

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

Yu, G.

G. Yu, Z. Liu, X. M. Xie, X. Ouyang, and G. Z. Shen, “Flexible photodetectors with single-crystalline GaTe nanowires,” J. Mater. Chem. C 2, 6104–6110 (2014).
[Crossref]

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

Z. Liu, G. Chen, B. Liang, G. Yu, H. T. Huang, D. Chen, and G. Z. Shen, “Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors,” Opt. Express 21, 7799–7810 (2013).
[Crossref]

Yu, J.

D. Guidotti, J. Yu, M. Blaser, V. Grundlehner, and G.-K. Chang, “Edge viewing photodetectors for strictly in-plane lightwave circuit integration and flexible optical interconnects,” in 56th Electronic Components and Technology Conference (IEEE, 2006), p. 7.

Yu, Z. F.

M. Kim, J. H. Seo, Z. F. Yu, W. D. Zhou, and Z. Q. Ma, “Flexible germanium nanomembrane metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 109, 051105 (2016).
[Crossref]

Yuan, H. C.

H. C. Yuan, J. H. Shin, G. X. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Q. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94, 013102 (2009).
[Crossref]

Yukita, W.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

Yun, S.

S. Yun, S. Park, B. Park, Y. Kim, S. K. Park, S. Nam, and K. U. Kyung, “Polymer‐waveguide‐based flexible tactile sensor array for dynamic response,” Adv. Mater. 26, 4474–4480 (2014).
[Crossref]

Yun, S. H.

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Yun, S.-H.

M. Humar, S. J. Kwok, M. Choi, A. K. Yetisen, S. Cho, and S.-H. Yun, “Toward biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

Zalar, P.

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

Zeilinger, M.

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

Zerdoum, A. B.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

Zhang, D. N.

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Zhang, F.

D. B. Velusamy, M. A. Haque, M. R. Parida, F. Zhang, T. Wu, O. F. Mohammed, and H. N. Alshareef, “2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors,” Adv. Funct. Mater. 27, 1605554 (2017).
[Crossref]

Zhang, J.

K. K. Manga, J. Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids,” Adv. Mater. 24, 1697–1702 (2012).
[Crossref]

Zhang, K.

J. H. Seo, K. Zhang, M. Kim, D. Y. Zhao, H. J. Yang, W. D. Zhou, and Z. Q. Ma, “Flexible phototransistors based on single-crystalline silicon nanomembranes,” Adv. Opt. Mater. 4, 120–125 (2016).
[Crossref]

Zhang, L.

H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).

Zhang, M.

S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, and G. Shi, “A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite,” Adv. Mater. 28, 5969–5974 (2016).
[Crossref]

Zhang, P.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

Zhang, Q. P.

S. Lim, D. S. Um, M. Ha, Q. P. Zhang, Y. Lee, Y. J. Lin, Z. Y. Fan, and H. Ko, “Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes,” Nano Res. 10, 22–36 (2017).
[Crossref]

Zhang, S.

S. Zhang, L. Cai, T. Wang, J. Miao, N. Sepulveda, and C. Wang, “Fully printed flexible carbon nanotube photodetectors,” Appl. Phys. Lett. 110123105 (2017).
[Crossref]

Zhang, T. M.

Z. Q. Zheng, T. M. Zhang, J. D. Yao, Y. Zhang, J. R. Xu, and G. W. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref]

Zhang, X. D.

X. Hu, X. D. Zhang, L. Liang, J. Bao, S. Li, W. L. Yang, and Y. Xie, “High-performance flexible broadband photodetector based on organolead halide perovskite,” Adv. Funct. Mater. 24, 7373–7380 (2014).
[Crossref]

Zhang, X. J.

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

Zhang, Y.

Z. Q. Zheng, T. M. Zhang, J. D. Yao, Y. Zhang, J. R. Xu, and G. W. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref]

H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).

Zhao, D. Y.

J. H. Seo, K. Zhang, M. Kim, D. Y. Zhao, H. J. Yang, W. D. Zhou, and Z. Q. Ma, “Flexible phototransistors based on single-crystalline silicon nanomembranes,” Adv. Opt. Mater. 4, 120–125 (2016).
[Crossref]

Zhao, H.

H. Zhao, K. O’Brien, S. Li, and R. F. Shepherd, “Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides,” Science Robotics 1, eaai7529 (2016).
[Crossref]

Zhao, K.

J. B. Li, Y. L. Shen, Y. C. Liu, F. Shi, X. D. Ren, T. Q. Niu, K. Zhao, and S. Z. F. Liu, “Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite,” ACS Appl. Mater. Interfaces 9, 19176–19183 (2017).
[Crossref]

Zheng, B.

H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).

Zheng, H.

H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).

Zheng, Z. Q.

Z. Q. Zheng, T. M. Zhang, J. D. Yao, Y. Zhang, J. R. Xu, and G. W. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref]

Zhou, J.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Zhou, W. D.

J. H. Seo, K. Zhang, M. Kim, D. Y. Zhao, H. J. Yang, W. D. Zhou, and Z. Q. Ma, “Flexible phototransistors based on single-crystalline silicon nanomembranes,” Adv. Opt. Mater. 4, 120–125 (2016).
[Crossref]

M. Kim, J. H. Seo, Z. F. Yu, W. D. Zhou, and Z. Q. Ma, “Flexible germanium nanomembrane metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 109, 051105 (2016).
[Crossref]

W. Q. Yang, H. J. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref, and W. D. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96, 121107 (2010).
[Crossref]

Zhu, M. Q.

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

Zou, Y.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N.-N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A fully-integrated flexible photonic platform for chip-to-chip optical interconnects,” J. Lightwave Technol. 31, 4080–4086 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (1)

J. B. Li, Y. L. Shen, Y. C. Liu, F. Shi, X. D. Ren, T. Q. Niu, K. Zhao, and S. Z. F. Liu, “Stable high-performance flexible photodetector based on upconversion nanoparticles/perovskite microarrays composite,” ACS Appl. Mater. Interfaces 9, 19176–19183 (2017).
[Crossref]

ACS Photon. (1)

D. J. Fan, K. Lee, and S. R. Forres, “Flexible thin-film InGaAs photodiode focal plane array,” ACS Photon. 3, 670–676 (2016).
[Crossref]

Adv. Electron. Mater. (1)

R. Eckstein, T. Rodlmeier, T. Glaser, S. Valouch, R. Mauer, U. Lemmer, and G. Hernandez-Sosa, “Aerosol-jet printed flexible organic photodiodes: semi-transparent, color neutral, and highly efficient,” Adv. Electron. Mater. 1, 1500101 (2015).
[Crossref]

Adv. Funct. Mater. (2)

X. Hu, X. D. Zhang, L. Liang, J. Bao, S. Li, W. L. Yang, and Y. Xie, “High-performance flexible broadband photodetector based on organolead halide perovskite,” Adv. Funct. Mater. 24, 7373–7380 (2014).
[Crossref]

D. B. Velusamy, M. A. Haque, M. R. Parida, F. Zhang, T. Wu, O. F. Mohammed, and H. N. Alshareef, “2D organic-inorganic hybrid thin films for flexible UV-visible photodetectors,” Adv. Funct. Mater. 27, 1605554 (2017).
[Crossref]

Adv. Mater. (4)

K. K. Manga, J. Z. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji, and K. P. Loh, “High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids,” Adv. Mater. 24, 1697–1702 (2012).
[Crossref]

S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, and G. Shi, “A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite,” Adv. Mater. 28, 5969–5974 (2016).
[Crossref]

W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee, and J. S. Jie, “Aligned single-crystalline perovskite microwire arrays for high-performance flexible image sensors with long-term stability,” Adv. Mater. 28, 2201–2208 (2016).
[Crossref]

S. Yun, S. Park, B. Park, Y. Kim, S. K. Park, S. Nam, and K. U. Kyung, “Polymer‐waveguide‐based flexible tactile sensor array for dynamic response,” Adv. Mater. 26, 4474–4480 (2014).
[Crossref]

Adv. Opt. Mater. (3)

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, and K. D. Dobson, “Solution processing and resist‐free nanoimprint fabrication of thin film chalcogenide glass devices: inorganic-organic hybrid photonic integration,” Adv. Opt. Mater. 2, 759–764 (2014).
[Crossref]

Y. Zou, D. N. Zhang, H. T. Lin, L. Li, L. Moreel, J. Zhou, Q. Y. Du, O. Ogbuu, S. Danto, J. D. Musgraves, K. Richardson, K. D. Dobson, R. Birkmire, and J. J. Hu, “High-performance, high-index-contrast chalcogenide glass photonics on silicon and unconventional non-planar substrates,” Adv. Opt. Mater. 2, 478–486 (2014).
[Crossref]

J. H. Seo, K. Zhang, M. Kim, D. Y. Zhao, H. J. Yang, W. D. Zhou, and Z. Q. Ma, “Flexible phototransistors based on single-crystalline silicon nanomembranes,” Adv. Opt. Mater. 4, 120–125 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. Kim, J. H. Seo, Z. F. Yu, W. D. Zhou, and Z. Q. Ma, “Flexible germanium nanomembrane metal-semiconductor-metal photodiodes,” Appl. Phys. Lett. 109, 051105 (2016).
[Crossref]

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett. 92, 213303 (2008).
[Crossref]

S. Zhang, L. Cai, T. Wang, J. Miao, N. Sepulveda, and C. Wang, “Fully printed flexible carbon nanotube photodetectors,” Appl. Phys. Lett. 110123105 (2017).
[Crossref]

W. Q. Yang, H. J. Yang, G. X. Qin, Z. Q. Ma, J. Berggren, M. Hammar, R. Soref, and W. D. Zhou, “Large-area InP-based crystalline nanomembrane flexible photodetectors,” Appl. Phys. Lett. 96, 121107 (2010).
[Crossref]

H. C. Yuan, J. H. Shin, G. X. Qin, L. Sun, P. Bhattacharya, M. G. Lagally, G. K. Celler, and Z. Q. Ma, “Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes,” Appl. Phys. Lett. 94, 013102 (2009).
[Crossref]

K. Brennan, “Theory of the steady‐state hole drift velocity in InGaAs,” Appl. Phys. Lett. 51, 995–997 (1987).
[Crossref]

IEEE Photon. Technol. Lett. (2)

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[Crossref]

J. Missinne, E. Bosman, B. Van Hoe, G. Van Steenberge, S. Kalathimekkad, P. Van Daele, and J. Vanfleteren, “Flexible shear sensor based on embedded optoelectronic components,” IEEE Photon. Technol. Lett. 23, 771–773 (2011).
[Crossref]

J. Appl. Mech. (1)

Y. Shi, J. A. Rogers, C. Gao, and Y. Huang, “Multiple neutral axes in bending of a multiple-layer beam with extremely different elastic properties,” J. Appl. Mech. 81, 114501 (2014).
[Crossref]

J. Lightwave Technol. (3)

J. Mater. Chem. (1)

K. Heo, H. Lee, Y. Park, J. Park, H. J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, “Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses,” J. Mater. Chem. 22, 2173–2179 (2012).
[Crossref]

J. Mater. Chem. C (2)

G. Yu, Z. Liu, X. M. Xie, X. Ouyang, and G. Z. Shen, “Flexible photodetectors with single-crystalline GaTe nanowires,” J. Mater. Chem. C 2, 6104–6110 (2014).
[Crossref]

G. Chen, B. Liang, Z. Liu, G. Yu, X. M. Xie, T. Luo, Z. Xie, D. Chen, M. Q. Zhu, and G. Z. Shen, “High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays,” J. Mater. Chem. C 2, 1270–1277 (2014).
[Crossref]

J. Microelectron. Electron. Packag. (1)

H. J. Kang, T. Kim, and M. Y. Jeong, “PLC devices fabricated on flexible plastic substrate by roll-to-roll imprint lithography,” J. Microelectron. Electron. Packag. 22, 25–29 (2015).
[Crossref]

Nano Lett. (1)

C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, and H. Park, “Stretchable photonic crystal cavity with wide frequency tunability,” Nano Lett. 13, 248–252 (2012).
[Crossref]

Nano Res. (1)

S. Lim, D. S. Um, M. Ha, Q. P. Zhang, Y. Lee, Y. J. Lin, Z. Y. Fan, and H. Ko, “Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes,” Nano Res. 10, 22–36 (2017).
[Crossref]

Nanophotonics (1)

M. Humar, S. J. Kwok, M. Choi, A. K. Yetisen, S. Cho, and S.-H. Yun, “Toward biomaterial-based implantable photonic devices,” Nanophotonics 6, 414–434 (2017).
[Crossref]

Nanoscale (1)

X. M. Xie and G. Z. Shen, “Single-crystalline In2S3 nanowire-based flexible visible-light photodetectors with an ultra-high photoresponse,” Nanoscale 7, 5046–5052 (2015).
[Crossref]

Nanotechnology (1)

Z. Q. Zheng, T. M. Zhang, J. D. Yao, Y. Zhang, J. R. Xu, and G. W. Yang, “Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices,” Nanotechnology 27, 225501 (2016).
[Crossref]

Nat. Commun. (2)

D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, “Flexible transition metal dichalcogenide nanosheets for band-selective photodetection,” Nat. Commun. 6, 8063 (2015).
[Crossref]

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, and R. W. Redmond, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 710374 (2016).
[Crossref]

Nat. Photonics (2)

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8, 643–649 (2014).
[Crossref]

M. Choi, J. W. Choi, S. Kim, S. Nizamoglu, S. K. Hahn, and S. H. Yun, “Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo,” Nat. Photonics 7, 987–994 (2013).
[Crossref]

Opt. Express (7)

S. Aikio, J. Hiltunen, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Karioja, “Disposable photonic integrated circuits for evanescent wave sensors by ultra-high volume roll-to-roll method,” Opt. Express 24, 2527–2541 (2016).
[Crossref]

L. Fan, L. T. Varghese, Y. Xuan, J. Wang, B. Niu, and M. Qi, “Direct fabrication of silicon photonic devices on a flexible platform and its application for strain sensing,” Opt. Express 20, 20564–20575 (2012).
[Crossref]

Z. Liu, G. Chen, B. Liang, G. Yu, H. T. Huang, D. Chen, and G. Z. Shen, “Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors,” Opt. Express 21, 7799–7810 (2013).
[Crossref]

D. Ahn, C.-Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express 15, 3916–3921 (2007).
[Crossref]

J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, and G. Van Steenberge, “Stretchable optical waveguides,” Opt. Express 22, 4168–4179 (2014).
[Crossref]

J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express 15, 2307–2314 (2007).
[Crossref]

J. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798–11807 (2007).
[Crossref]

Org. Electron. (2)

G. H. Gelinck, A. Kumar, D. Moet, J. L. van der Steen, U. Shafique, P. E. Malinowski, K. Myny, B. P. Rand, M. Simon, W. Rutten, A. Douglas, J. Jorritsma, P. Heremans, and R. Andriessen, “X-ray imager using solution processed organic transistor arrays and bulk heterojunction photodiodes on thin, flexible plastic substrate,” Org. Electron. 14, 2602–2609 (2013).
[Crossref]

H. Kong, J. Sinha, D. Hoeft, S. B. Kirschner, D. H. Reich, and H. E. Katz, “Solution processable organic p-n junction bilayer vertical photodiodes,” Org. Electron. 14, 703–710 (2013).
[Crossref]

RSC Adv. (1)

S. Aikio, M. Zeilinger, J. Hiltunen, L. Hakalahti, J. Hiitola-Keinänen, M. Hiltunen, V. Kontturi, S. Siitonen, J. Puustinen, and P. Lieberzeit, “Disposable (bio) chemical integrated optical waveguide sensors implemented on roll-to-roll produced platforms,” RSC Adv. 6, 50414–50422 (2016).
[Crossref]

Sci. Adv. (2)

T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Sci. Adv. 2, e1501856 (2016).
[Crossref]

J. Kim, G. A. Salvatore, H. Araki, A. M. Chiarelli, Z. Xie, A. Banks, X. Sheng, Y. Liu, J. W. Lee, and K.-I. Jang, “Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin,” Sci. Adv. 2, e1600418 (2016).
[Crossref]

Sci. Rep. (1)

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 Photonics,” Sci. Rep. 5, 13832 (2015).
[Crossref]

Science Robotics (1)

H. Zhao, K. O’Brien, S. Li, and R. F. Shepherd, “Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides,” Science Robotics 1, eaai7529 (2016).
[Crossref]

Other (3)

D. Guidotti, J. Yu, M. Blaser, V. Grundlehner, and G.-K. Chang, “Edge viewing photodetectors for strictly in-plane lightwave circuit integration and flexible optical interconnects,” in 56th Electronic Components and Technology Conference (IEEE, 2006), p. 7.

H. Zheng, J. Ding, L. Zhang, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin, high-efficiency mid-infrared transmissive Huygens meta-optics,” arXiv:1707.00760 (2017).

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, 1996).

Supplementary Material (1)

NameDescription
» Supplement 1       Supplemental document

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic fabrication process flow of the flexible waveguide-integrated detector; (b) top-view optical micrograph of a detector prior to the SU-8 top cladding capping step.
Fig. 2.
Fig. 2. (a) Laminated structure of the flexible detector; (b) local strain at the NM layer versus the thicknesses of top and bottom SU-8 claddings predicted using the MNA theory: the star represents the experimentally realized device structure; (c), (d) strain distribution in the fabricated device computed using FEM: the red dashed lines mark the position of the NM layer.
Fig. 3.
Fig. 3. (a) Side-view optical intensity distribution in the waveguide-coupled detector structure simulated using FDTD: the optical input is launched from the ChG waveguide on the left-hand-side; (b), (c) optical modal profiles in (b) the input ChG waveguide; and (c) the detector mesa with a loaded waveguide strip; (d) guided optical power flux in the hybrid ChG-detector mesa waveguide (normalized to input power) versus propagation distance along the structure; inset portrays the profile of the odd supermode, which is primarily confined in the ChG strip.
Fig. 4.
Fig. 4. (a) Schematic diagram of the device characterization setup; (b) photo of a flexible detector sample during the measurement; (c) top-view micrograph of a sample under test.
Fig. 5.
Fig. 5. (a) Dark current of the device measured: (black) in a flat state and (red) when bent to 0.8 mm radius and after 1000 bending cycles; (b) I–V responses of the detector at different input optical power levels; (c) double logarithm plot showing the linear dynamic range of the device; (d) dynamic response of the detector. The optical power values are quoted as guided power in the waveguide estimated based on experimentally extracted coupling losses.
Fig. 6.
Fig. 6. (a) Side-view of the device bent to a radius of R=0.8  mm; (b) responsivity of the detector measured at 0.8 mm bending radius and 1530 nm wavelength, after multiple bending cycles at R=0.8  mm: the data are normalized to the detector responsivity in its as-fabricated, flat state and the error bars correspond to standard deviations over measurements taken on three devices; (c) spectral response of a flexible detector across the C-band measured at its nondeformed and bent states: note that the spectral measurement is taken using the edge coupling method and on a different device (albeit with a nominally identical device design).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ss=2qId  (shot noise),
SJ=4kBTR  (Johnson noise),
NEP=Ss+SJRI,

Metrics