Abstract

A key point of exciton polaritons is real-time controllability of potential energy and its landscape due to the hybrid nature of excitons and photons. Although wide-bandgap semiconductors allow us to generate room-temperature polaritons, unintentional localizations of two-dimensional cavities caused by disorder (dephasing and potential fluctuation) still hinder the establishment of ballistic extensions of polariton condensates. This ballistic extension accompanies spatial coherence, an essential factor for phase transitions as well as any quantum controls. Here we propose a room-temperature polariton system with ultralow disorder capable of one-dimensional ballistic propagation. Selectively grown GaN wire dramatically reduces disorder in both the exciton perspective via dislocation bending and the photon perspective through crystallographically defined hexagonal cavities. This high-quality wire on a substrate forms triangular whispering gallery modes and allows us to demonstrate the room-temperature single-mode one-dimensional polariton condensate with ballistic propagation. This ballistic propagation is manipulated by active real-time control of the potential gradient. The correlation between propagation distances deduced from real and momentum space provides strong evidence of ballistic propagations in an ultralow-disordered one-dimensional system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity

Tien-Chang Lu, Ying-Yu Lai, Yu-Pin Lan, Si-Wei Huang, Jun-Rong Chen, Yung-Chi Wu, Wen-Feng Hsieh, and Hui Deng
Opt. Express 20(5) 5530-5537 (2012)

Room temperature Bloch surface wave polaritons

Giovanni Lerario, Alessandro Cannavale, Dario Ballarini, Lorenzo Dominici, Milena De Giorgi, Marco Liscidini, Dario Gerace, Daniele Sanvitto, and Giuseppe Gigli
Opt. Lett. 39(7) 2068-2071 (2014)

Room temperature strong coupling in a semiconductor microcavity with embedded AlGaAs quantum wells designed for polariton lasing

H. Suchomel, S. Kreutzer, M. Jörg, S. Brodbeck, M. Pieczarka, S. Betzold, C. P. Dietrich, G. Sęk, C. Schneider, and S. Höfling
Opt. Express 25(20) 24816-24826 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
    [Crossref]
  2. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
    [Crossref]
  3. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
    [Crossref]
  4. A. Amo, S. Piegeon, C. Adrados, R. Houder, E. Giacobino, C. Ciuti, and A. Bramati, “Light engineering of the polariton landscape in semiconductor microcavities,” Phys. Rev. B 82, 081301 (2010).
    [Crossref]
  5. G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
    [Crossref]
  6. E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
    [Crossref]
  7. A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton–polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
    [Crossref]
  8. D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
    [Crossref]
  9. C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
    [Crossref]
  10. H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
    [Crossref]
  11. M. Richard, J. Kasprzak, R. Romestain, R. André, and L. S. Dang, “Spontaneous coherent phase transition of polaritons in CdTe microcavities,” Phys. Rev. Lett. 94, 187401 (2005).
    [Crossref]
  12. E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
    [Crossref]
  13. B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
    [Crossref]
  14. D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
    [Crossref]
  15. D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
    [Crossref]
  16. D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
    [Crossref]
  17. R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, and Q. Xiong, “Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites,” Sci. Adv. 4, eaau0244 (2018).
    [Crossref]
  18. T. Michalsky, M. Wille, M. Grundmann, and R. Schmidt-Grund, “Spatiotemporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature,” Nano Lett. 18, 6820–6825 (2018).
    [Crossref]
  19. S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
    [Crossref]
  20. J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
    [Crossref]
  21. R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80, 233301 (2009).
    [Crossref]
  22. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
    [Crossref]
  23. J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13, 2376–2380 (2013).
    [Crossref]
  24. R. F. Jayaprakash, G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, “Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap,” Sci. Rep. 7, 5542 (2017).
    [Crossref]
  25. R. Tao, K. Kamide, M. Arita, S. Kako, and Y. Arakawa, “Room-temperature observation of trapped exciton-polariton emission in GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors,” ACS Photon. 3, 1182–1187 (2016).
    [Crossref]
  26. R. Jedicke, D. Nesvorny, R. Whiteley, Z. Z. Ivezic, and M. Juric, “An age–colour relationship for main-belt S-complex asteroids,” Nature 429, 275–277 (2004).
    [Crossref]
  27. T. Kinoshita, T. Wenger, and D. S. Weiss, “Observation of a one-dimensional Tonks-Girardeau gas,” Science 305, 1125–1128 (2004).
    [Crossref]
  28. L. A. Jauregui, M. T. Pettes, L. P. Rokhinson, L. Shi, and Y. P. Chen, “Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon,” Nat. Nanotechnol. 11, 345–351 (2016).
    [Crossref]
  29. S.-Y. Bae, B. O. Jung, K. Lekhal, S. Y. Kim, J. Y. Lee, D.-S. Lee, Y. Honda, and H. Amano, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition,” CrystEngComm 18, 1505–1514(2016).
    [Crossref]
  30. D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys. 85, 6492–6496 (1999).
    [Crossref]
  31. M. Wouters, I. Carusotto, and C. Ciuti, “Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates,” Phys. Rev. B 77, 115340 (2008).
    [Crossref]
  32. A. P. Foster, J. P. Bradley, K. Gardner, A. B. Krysa, B. Royall, M. S. Skolnick, and L. R. Wilson, “Linearly polarized emission from an embedded quantum dot using nanowire morphology control,” Nano Lett. 15, 1559–1563 (2015).
    [Crossref]
  33. D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
    [Crossref]
  34. M. Kaliteevski, S. Brand, R. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75, 233309 (2007).
    [Crossref]
  35. T. Guillet and C. Brimont, “Polariton condensates at room temperature,” C. R. Physique 17, 946–956 (2016).
    [Crossref]
  36. J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory,” Phys. Rev. B 81, 125305 (2010).
    [Crossref]
  37. S.-H. Gong, S.-M. Ko, M.-H. Jang, and Y.-H. Cho, “Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire,” Nano Lett. 15, 4517–4524 (2015).
    [Crossref]
  38. A. Trichet, F. Médard, J. Zuniga-Perez, B. Alloing, and M. Richard, “From strong to weak coupling regime in a single GaN microwire up to room temperature,” New J. Phys. 14, 073004 (2012).
    [Crossref]
  39. F. Binet, J. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60, 4715–4722 (1999).
    [Crossref]
  40. R. Johne, D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93, 211105 (2008).
    [Crossref]
  41. A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
    [Crossref]
  42. F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
    [Crossref]
  43. D. Saxena, F. Wang, Q. Gao, S. Mokkapati, H. H. Tan, and C. Jagadish, “Mode profiling of semiconductor nanowire lasers,” Nano Lett. 15, 5342–5348 (2015).
    [Crossref]
  44. R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
    [Crossref]

2018 (3)

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, and Q. Xiong, “Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites,” Sci. Adv. 4, eaau0244 (2018).
[Crossref]

T. Michalsky, M. Wille, M. Grundmann, and R. Schmidt-Grund, “Spatiotemporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature,” Nano Lett. 18, 6820–6825 (2018).
[Crossref]

2017 (2)

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

R. F. Jayaprakash, G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, “Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap,” Sci. Rep. 7, 5542 (2017).
[Crossref]

2016 (4)

R. Tao, K. Kamide, M. Arita, S. Kako, and Y. Arakawa, “Room-temperature observation of trapped exciton-polariton emission in GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors,” ACS Photon. 3, 1182–1187 (2016).
[Crossref]

L. A. Jauregui, M. T. Pettes, L. P. Rokhinson, L. Shi, and Y. P. Chen, “Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon,” Nat. Nanotechnol. 11, 345–351 (2016).
[Crossref]

S.-Y. Bae, B. O. Jung, K. Lekhal, S. Y. Kim, J. Y. Lee, D.-S. Lee, Y. Honda, and H. Amano, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition,” CrystEngComm 18, 1505–1514(2016).
[Crossref]

T. Guillet and C. Brimont, “Polariton condensates at room temperature,” C. R. Physique 17, 946–956 (2016).
[Crossref]

2015 (4)

S.-H. Gong, S.-M. Ko, M.-H. Jang, and Y.-H. Cho, “Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire,” Nano Lett. 15, 4517–4524 (2015).
[Crossref]

A. P. Foster, J. P. Bradley, K. Gardner, A. B. Krysa, B. Royall, M. S. Skolnick, and L. R. Wilson, “Linearly polarized emission from an embedded quantum dot using nanowire morphology control,” Nano Lett. 15, 1559–1563 (2015).
[Crossref]

D. Saxena, F. Wang, Q. Gao, S. Mokkapati, H. H. Tan, and C. Jagadish, “Mode profiling of semiconductor nanowire lasers,” Nano Lett. 15, 5342–5348 (2015).
[Crossref]

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

2014 (2)

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

2013 (5)

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13, 2376–2380 (2013).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

2012 (2)

A. Trichet, F. Médard, J. Zuniga-Perez, B. Alloing, and M. Richard, “From strong to weak coupling regime in a single GaN microwire up to room temperature,” New J. Phys. 14, 073004 (2012).
[Crossref]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

2011 (3)

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[Crossref]

A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
[Crossref]

2010 (6)

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory,” Phys. Rev. B 81, 125305 (2010).
[Crossref]

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton–polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

A. Amo, S. Piegeon, C. Adrados, R. Houder, E. Giacobino, C. Ciuti, and A. Bramati, “Light engineering of the polariton landscape in semiconductor microcavities,” Phys. Rev. B 82, 081301 (2010).
[Crossref]

2009 (1)

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80, 233301 (2009).
[Crossref]

2008 (2)

M. Wouters, I. Carusotto, and C. Ciuti, “Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates,” Phys. Rev. B 77, 115340 (2008).
[Crossref]

R. Johne, D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93, 211105 (2008).
[Crossref]

2007 (3)

M. Kaliteevski, S. Brand, R. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75, 233309 (2007).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

2006 (1)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

2005 (1)

M. Richard, J. Kasprzak, R. Romestain, R. André, and L. S. Dang, “Spontaneous coherent phase transition of polaritons in CdTe microcavities,” Phys. Rev. Lett. 94, 187401 (2005).
[Crossref]

2004 (2)

R. Jedicke, D. Nesvorny, R. Whiteley, Z. Z. Ivezic, and M. Juric, “An age–colour relationship for main-belt S-complex asteroids,” Nature 429, 275–277 (2004).
[Crossref]

T. Kinoshita, T. Wenger, and D. S. Weiss, “Observation of a one-dimensional Tonks-Girardeau gas,” Science 305, 1125–1128 (2004).
[Crossref]

1999 (2)

D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys. 85, 6492–6496 (1999).
[Crossref]

F. Binet, J. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60, 4715–4722 (1999).
[Crossref]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Abram, R.

M. Kaliteevski, S. Brand, R. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75, 233309 (2007).
[Crossref]

Adrados, C.

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton–polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

A. Amo, S. Piegeon, C. Adrados, R. Houder, E. Giacobino, C. Ciuti, and A. Bramati, “Light engineering of the polariton landscape in semiconductor microcavities,” Phys. Rev. B 82, 081301 (2010).
[Crossref]

Alloing, B.

A. Trichet, F. Médard, J. Zuniga-Perez, B. Alloing, and M. Richard, “From strong to weak coupling regime in a single GaN microwire up to room temperature,” New J. Phys. 14, 073004 (2012).
[Crossref]

Amano, H.

S.-Y. Bae, B. O. Jung, K. Lekhal, S. Y. Kim, J. Y. Lee, D.-S. Lee, Y. Honda, and H. Amano, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition,” CrystEngComm 18, 1505–1514(2016).
[Crossref]

Amo, A.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

A. Amo, S. Piegeon, C. Adrados, R. Houder, E. Giacobino, C. Ciuti, and A. Bramati, “Light engineering of the polariton landscape in semiconductor microcavities,” Phys. Rev. B 82, 081301 (2010).
[Crossref]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton–polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

André, R.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

M. Richard, J. Kasprzak, R. Romestain, R. André, and L. S. Dang, “Spontaneous coherent phase transition of polaritons in CdTe microcavities,” Phys. Rev. Lett. 94, 187401 (2005).
[Crossref]

Arakawa, Y.

R. Tao, K. Kamide, M. Arita, S. Kako, and Y. Arakawa, “Room-temperature observation of trapped exciton-polariton emission in GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors,” ACS Photon. 3, 1182–1187 (2016).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Arita, M.

R. Tao, K. Kamide, M. Arita, S. Kako, and Y. Arakawa, “Room-temperature observation of trapped exciton-polariton emission in GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors,” ACS Photon. 3, 1182–1187 (2016).
[Crossref]

Baas, A.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Bae, S.-Y.

S.-Y. Bae, B. O. Jung, K. Lekhal, S. Y. Kim, J. Y. Lee, D.-S. Lee, Y. Honda, and H. Amano, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition,” CrystEngComm 18, 1505–1514(2016).
[Crossref]

Balili, R.

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Ballarini, D.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

Baumberg, J. J.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Berloff, N. G.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Bhattacharya, P.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13, 2376–2380 (2013).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[Crossref]

Biermann, K.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

Binet, F.

F. Binet, J. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60, 4715–4722 (1999).
[Crossref]

Bloch, J.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Bouchoule, S.

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Bradley, J. P.

A. P. Foster, J. P. Bradley, K. Gardner, A. B. Krysa, B. Royall, M. S. Skolnick, and L. R. Wilson, “Linearly polarized emission from an embedded quantum dot using nanowire morphology control,” Nano Lett. 15, 1559–1563 (2015).
[Crossref]

Bradley, R.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

Bramati, A.

D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton–polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

A. Amo, S. Piegeon, C. Adrados, R. Houder, E. Giacobino, C. Ciuti, and A. Bramati, “Light engineering of the polariton landscape in semiconductor microcavities,” Phys. Rev. B 82, 081301 (2010).
[Crossref]

Brand, S.

M. Kaliteevski, S. Brand, R. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75, 233309 (2007).
[Crossref]

Brimont, C.

T. Guillet and C. Brimont, “Polariton condensates at room temperature,” C. R. Physique 17, 946–956 (2016).
[Crossref]

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Butté, R.

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory,” Phys. Rev. B 81, 125305 (2010).
[Crossref]

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80, 233301 (2009).
[Crossref]

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Cai, L.

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Cancellieri, E.

D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

Caputo, D.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

Carlin, J.-F.

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory,” Phys. Rev. B 81, 125305 (2010).
[Crossref]

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80, 233301 (2009).
[Crossref]

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Carusotto, I.

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

M. Wouters, I. Carusotto, and C. Ciuti, “Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates,” Phys. Rev. B 77, 115340 (2008).
[Crossref]

Cerda-Méndez, E. A.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

Chen, Y. P.

L. A. Jauregui, M. T. Pettes, L. P. Rokhinson, L. Shi, and Y. P. Chen, “Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon,” Nat. Nanotechnol. 11, 345–351 (2016).
[Crossref]

Chen, Z.

A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
[Crossref]

Cho, Y.-H.

S.-H. Gong, S.-M. Ko, M.-H. Jang, and Y.-H. Cho, “Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire,” Nano Lett. 15, 4517–4524 (2015).
[Crossref]

Christian, T.

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

Christmann, G.

R. F. Jayaprakash, G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, “Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap,” Sci. Rep. 7, 5542 (2017).
[Crossref]

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80, 233301 (2009).
[Crossref]

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Christopoulos, S.

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Cingolani, R.

D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

Ciuti, C.

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

A. Amo, S. Piegeon, C. Adrados, R. Houder, E. Giacobino, C. Ciuti, and A. Bramati, “Light engineering of the polariton landscape in semiconductor microcavities,” Phys. Rev. B 82, 081301 (2010).
[Crossref]

M. Wouters, I. Carusotto, and C. Ciuti, “Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates,” Phys. Rev. B 77, 115340 (2008).
[Crossref]

Dagvadorj, G.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

Dang, L. S.

A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
[Crossref]

M. Kaliteevski, S. Brand, R. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75, 233309 (2007).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

M. Richard, J. Kasprzak, R. Romestain, R. André, and L. S. Dang, “Spontaneous coherent phase transition of polaritons in CdTe microcavities,” Phys. Rev. Lett. 94, 187401 (2005).
[Crossref]

Das, A.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[Crossref]

Deng, H.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[Crossref]

Deveaud, B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Diederichs, C.

R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, and Q. Xiong, “Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites,” Sci. Adv. 4, eaau0244 (2018).
[Crossref]

Disseix, P.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Dominici, L.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

Duboz, J.

F. Binet, J. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60, 4715–4722 (1999).
[Crossref]

Feltin, E.

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory,” Phys. Rev. B 81, 125305 (2010).
[Crossref]

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80, 233301 (2009).
[Crossref]

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Ferrier, L.

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Flayac, H.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

Foster, A. P.

A. P. Foster, J. P. Bradley, K. Gardner, A. B. Krysa, B. Royall, M. S. Skolnick, and L. R. Wilson, “Linearly polarized emission from an embedded quantum dot using nanowire morphology control,” Nano Lett. 15, 1559–1563 (2015).
[Crossref]

Galopin, E.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

Gao, Q.

D. Saxena, F. Wang, Q. Gao, S. Mokkapati, H. H. Tan, and C. Jagadish, “Mode profiling of semiconductor nanowire lasers,” Nano Lett. 15, 5342–5348 (2015).
[Crossref]

Gao, T.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Gardner, K.

A. P. Foster, J. P. Bradley, K. Gardner, A. B. Krysa, B. Royall, M. S. Skolnick, and L. R. Wilson, “Linearly polarized emission from an embedded quantum dot using nanowire morphology control,” Nano Lett. 15, 1559–1563 (2015).
[Crossref]

Gayral, B.

R. F. Jayaprakash, G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, “Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap,” Sci. Rep. 7, 5542 (2017).
[Crossref]

Giacobino, E.

D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton–polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

A. Amo, S. Piegeon, C. Adrados, R. Houder, E. Giacobino, C. Ciuti, and A. Bramati, “Light engineering of the polariton landscape in semiconductor microcavities,” Phys. Rev. B 82, 081301 (2010).
[Crossref]

Gigli, G.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

Giorgi, M. D.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

Gippius, N. A.

A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
[Crossref]

Glauser, M.

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

Gong, S.-H.

S.-H. Gong, S.-M. Ko, M.-H. Jang, and Y.-H. Cho, “Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire,” Nano Lett. 15, 4517–4524 (2015).
[Crossref]

Grandjean, N.

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory,” Phys. Rev. B 81, 125305 (2010).
[Crossref]

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80, 233301 (2009).
[Crossref]

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Grousson, R.

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Grundmann, M.

T. Michalsky, M. Wille, M. Grundmann, and R. Schmidt-Grund, “Spatiotemporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature,” Nano Lett. 18, 6820–6825 (2018).
[Crossref]

Grundy, A. J. D.

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Guda, K.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

Guillet, T.

T. Guillet and C. Brimont, “Polariton condensates at room temperature,” C. R. Physique 17, 946–956 (2016).
[Crossref]

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Guimaraes, P. S. S.

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

Guo, W.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[Crossref]

Hahe, R.

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

Hartwell, V.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Hatzopoulos, Z.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Heo, J.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13, 2376–2380 (2013).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[Crossref]

Hersee, S. D.

D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys. 85, 6492–6496 (1999).
[Crossref]

Hey, R.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

Hivet, R.

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

Hocevar, M.

R. F. Jayaprakash, G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, “Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap,” Sci. Rep. 7, 5542 (2017).
[Crossref]

Honda, Y.

S.-Y. Bae, B. O. Jung, K. Lekhal, S. Y. Kim, J. Y. Lee, D.-S. Lee, Y. Honda, and H. Amano, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition,” CrystEngComm 18, 1505–1514(2016).
[Crossref]

Houder, R.

A. Amo, S. Piegeon, C. Adrados, R. Houder, E. Giacobino, C. Ciuti, and A. Bramati, “Light engineering of the polariton landscape in semiconductor microcavities,” Phys. Rev. B 82, 081301 (2010).
[Crossref]

Houdré, R.

D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton–polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Ivezic, Z. Z.

R. Jedicke, D. Nesvorny, R. Whiteley, Z. Z. Ivezic, and M. Juric, “An age–colour relationship for main-belt S-complex asteroids,” Nature 429, 275–277 (2004).
[Crossref]

Jagadish, C.

D. Saxena, F. Wang, Q. Gao, S. Mokkapati, H. H. Tan, and C. Jagadish, “Mode profiling of semiconductor nanowire lasers,” Nano Lett. 15, 5342–5348 (2015).
[Crossref]

Jahangir, S.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13, 2376–2380 (2013).
[Crossref]

Jang, M.-H.

S.-H. Gong, S.-M. Ko, M.-H. Jang, and Y.-H. Cho, “Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire,” Nano Lett. 15, 4517–4524 (2015).
[Crossref]

Jankowski, M.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[Crossref]

Jauregui, L. A.

L. A. Jauregui, M. T. Pettes, L. P. Rokhinson, L. Shi, and Y. P. Chen, “Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon,” Nat. Nanotechnol. 11, 345–351 (2016).
[Crossref]

Jayaprakash, R. F.

R. F. Jayaprakash, G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, “Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap,” Sci. Rep. 7, 5542 (2017).
[Crossref]

Jeambrun, P.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Jedicke, R.

R. Jedicke, D. Nesvorny, R. Whiteley, Z. Z. Ivezic, and M. Juric, “An age–colour relationship for main-belt S-complex asteroids,” Nature 429, 275–277 (2004).
[Crossref]

Johne, R.

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

R. Johne, D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93, 211105 (2008).
[Crossref]

Jung, B. O.

S.-Y. Bae, B. O. Jung, K. Lekhal, S. Y. Kim, J. Y. Lee, D.-S. Lee, Y. Honda, and H. Amano, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition,” CrystEngComm 18, 1505–1514(2016).
[Crossref]

Juric, M.

R. Jedicke, D. Nesvorny, R. Whiteley, Z. Z. Ivezic, and M. Juric, “An age–colour relationship for main-belt S-complex asteroids,” Nature 429, 275–277 (2004).
[Crossref]

Kako, S.

R. Tao, K. Kamide, M. Arita, S. Kako, and Y. Arakawa, “Room-temperature observation of trapped exciton-polariton emission in GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors,” ACS Photon. 3, 1182–1187 (2016).
[Crossref]

Kalaitzakis, G.

R. F. Jayaprakash, G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, “Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap,” Sci. Rep. 7, 5542 (2017).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, S. Brand, R. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75, 233309 (2007).
[Crossref]

Kamide, K.

R. Tao, K. Kamide, M. Arita, S. Kako, and Y. Arakawa, “Room-temperature observation of trapped exciton-polariton emission in GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors,” ACS Photon. 3, 1182–1187 (2016).
[Crossref]

Kamoun, O.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Kasprzak, J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

M. Richard, J. Kasprzak, R. Romestain, R. André, and L. S. Dang, “Spontaneous coherent phase transition of polaritons in CdTe microcavities,” Phys. Rev. Lett. 94, 187401 (2005).
[Crossref]

Kavokin, A.

M. Kaliteevski, S. Brand, R. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75, 233309 (2007).
[Crossref]

Kavokin, A. V.

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton–polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Keeling, J. M. J.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Kim, S. Y.

S.-Y. Bae, B. O. Jung, K. Lekhal, S. Y. Kim, J. Y. Lee, D.-S. Lee, Y. Honda, and H. Amano, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition,” CrystEngComm 18, 1505–1514(2016).
[Crossref]

Kinoshita, T.

T. Kinoshita, T. Wenger, and D. S. Weiss, “Observation of a one-dimensional Tonks-Girardeau gas,” Science 305, 1125–1128 (2004).
[Crossref]

Ko, S.-M.

S.-H. Gong, S.-M. Ko, M.-H. Jang, and Y.-H. Cho, “Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire,” Nano Lett. 15, 4517–4524 (2015).
[Crossref]

Krizhanovskii, D. N.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

Krysa, A. B.

A. P. Foster, J. P. Bradley, K. Gardner, A. B. Krysa, B. Royall, M. S. Skolnick, and L. R. Wilson, “Linearly polarized emission from an embedded quantum dot using nanowire morphology control,” Nano Lett. 15, 1559–1563 (2015).
[Crossref]

Kundermann, S.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Lafosse, X.

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Lagoudakis, P. G.

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Laussy, F. P.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

Lee, D.-S.

S.-Y. Bae, B. O. Jung, K. Lekhal, S. Y. Kim, J. Y. Lee, D.-S. Lee, Y. Honda, and H. Amano, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition,” CrystEngComm 18, 1505–1514(2016).
[Crossref]

Lee, J. Y.

S.-Y. Bae, B. O. Jung, K. Lekhal, S. Y. Kim, J. Y. Lee, D.-S. Lee, Y. Honda, and H. Amano, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition,” CrystEngComm 18, 1505–1514(2016).
[Crossref]

Lekhal, K.

S.-Y. Bae, B. O. Jung, K. Lekhal, S. Y. Kim, J. Y. Lee, D.-S. Lee, Y. Honda, and H. Amano, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition,” CrystEngComm 18, 1505–1514(2016).
[Crossref]

Lemaître, A.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Leroux, M.

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Levrat, J.

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory,” Phys. Rev. B 81, 125305 (2010).
[Crossref]

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80, 233301 (2009).
[Crossref]

Leymarie, J.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Li, F.

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Li, Z.

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Liew, T. C. H.

R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, and Q. Xiong, “Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites,” Sci. Adv. 4, eaau0244 (2018).
[Crossref]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton–polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

Littlewood, P. B.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Liu, G.

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

Luan, P.

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Malpuech, G.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
[Crossref]

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory,” Phys. Rev. B 81, 125305 (2010).
[Crossref]

R. Johne, D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93, 211105 (2008).
[Crossref]

Marchetti, F. M.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Médard, F.

A. Trichet, F. Médard, J. Zuniga-Perez, B. Alloing, and M. Richard, “From strong to weak coupling regime in a single GaN microwire up to room temperature,” New J. Phys. 14, 073004 (2012).
[Crossref]

Mexis, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Michalsky, T.

T. Michalsky, M. Wille, M. Grundmann, and R. Schmidt-Grund, “Spatiotemporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature,” Nano Lett. 18, 6820–6825 (2018).
[Crossref]

Mihailovic, M.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Mokkapati, S.

D. Saxena, F. Wang, Q. Gao, S. Mokkapati, H. H. Tan, and C. Jagadish, “Mode profiling of semiconductor nanowire lasers,” Nano Lett. 15, 5342–5348 (2015).
[Crossref]

Monroy, E.

R. F. Jayaprakash, G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, “Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap,” Sci. Rep. 7, 5542 (2017).
[Crossref]

Muñoz, C. S.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

Nelsen, B.

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

Nesvorny, D.

R. Jedicke, D. Nesvorny, R. Whiteley, Z. Z. Ivezic, and M. Juric, “An age–colour relationship for main-belt S-complex asteroids,” Nature 429, 275–277 (2004).
[Crossref]

Nguyen, H. S.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Off, J.

F. Binet, J. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60, 4715–4722 (1999).
[Crossref]

Orosz, L.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Patriarche, G.

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Pavlovic, G.

A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
[Crossref]

Pelekanos, N. T.

R. F. Jayaprakash, G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, “Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap,” Sci. Rep. 7, 5542 (2017).
[Crossref]

Pettes, M. T.

L. A. Jauregui, M. T. Pettes, L. P. Rokhinson, L. Shi, and Y. P. Chen, “Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon,” Nat. Nanotechnol. 11, 345–351 (2016).
[Crossref]

Pfeiffer, L.

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Pfeiffer, L. N.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

Piegeon, S.

A. Amo, S. Piegeon, C. Adrados, R. Houder, E. Giacobino, C. Ciuti, and A. Bramati, “Light engineering of the polariton landscape in semiconductor microcavities,” Phys. Rev. B 82, 081301 (2010).
[Crossref]

Pigeon, S.

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

Pisanello, F.

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

Read, D.

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

Réveret, F.

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

Richard, M.

A. Trichet, F. Médard, J. Zuniga-Perez, B. Alloing, and M. Richard, “From strong to weak coupling regime in a single GaN microwire up to room temperature,” New J. Phys. 14, 073004 (2012).
[Crossref]

A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

M. Richard, J. Kasprzak, R. Romestain, R. André, and L. S. Dang, “Spontaneous coherent phase transition of polaritons in CdTe microcavities,” Phys. Rev. Lett. 94, 187401 (2005).
[Crossref]

Rokhinson, L. P.

L. A. Jauregui, M. T. Pettes, L. P. Rokhinson, L. Shi, and Y. P. Chen, “Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon,” Nat. Nanotechnol. 11, 345–351 (2016).
[Crossref]

Romestain, R.

M. Richard, J. Kasprzak, R. Romestain, R. André, and L. S. Dang, “Spontaneous coherent phase transition of polaritons in CdTe microcavities,” Phys. Rev. Lett. 94, 187401 (2005).
[Crossref]

Royall, B.

A. P. Foster, J. P. Bradley, K. Gardner, A. B. Krysa, B. Royall, M. S. Skolnick, and L. R. Wilson, “Linearly polarized emission from an embedded quantum dot using nanowire morphology control,” Nano Lett. 15, 1559–1563 (2015).
[Crossref]

Rubo, Y. G.

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

Sagnes, I.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Sala, V. G.

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

Santos, P. V.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

Sanvitto, D.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Sarkar, D.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

Savona, V.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Savvidis, P. G.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Saxena, D.

D. Saxena, F. Wang, Q. Gao, S. Mokkapati, H. H. Tan, and C. Jagadish, “Mode profiling of semiconductor nanowire lasers,” Nano Lett. 15, 5342–5348 (2015).
[Crossref]

Schmidt-Grund, R.

T. Michalsky, M. Wille, M. Grundmann, and R. Schmidt-Grund, “Spatiotemporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature,” Nano Lett. 18, 6820–6825 (2018).
[Crossref]

Scholz, F.

F. Binet, J. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60, 4715–4722 (1999).
[Crossref]

Senellart, P.

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Shi, L.

L. A. Jauregui, M. T. Pettes, L. P. Rokhinson, L. Shi, and Y. P. Chen, “Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon,” Nat. Nanotechnol. 11, 345–351 (2016).
[Crossref]

Skolnick, M. S.

A. P. Foster, J. P. Bradley, K. Gardner, A. B. Krysa, B. Royall, M. S. Skolnick, and L. R. Wilson, “Linearly polarized emission from an embedded quantum dot using nanowire morphology control,” Nano Lett. 15, 1559–1563 (2015).
[Crossref]

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

Snoke, D.

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Snoke, D. W.

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

Solnyshkov, D.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory,” Phys. Rev. B 81, 125305 (2010).
[Crossref]

R. Johne, D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93, 211105 (2008).
[Crossref]

Solnyshkov, D. D.

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Staehli, J. L.

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Steger, M.

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

Sturm, C.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

Su, R.

R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, and Q. Xiong, “Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites,” Sci. Adv. 4, eaau0244 (2018).
[Crossref]

Sun, L.

A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
[Crossref]

Szymanska, M. H.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

Tan, H. H.

D. Saxena, F. Wang, Q. Gao, S. Mokkapati, H. H. Tan, and C. Jagadish, “Mode profiling of semiconductor nanowire lasers,” Nano Lett. 15, 5342–5348 (2015).
[Crossref]

Tanese, D.

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

Tao, R.

R. Tao, K. Kamide, M. Arita, S. Kako, and Y. Arakawa, “Room-temperature observation of trapped exciton-polariton emission in GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors,” ACS Photon. 3, 1182–1187 (2016).
[Crossref]

Tosi, G.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Trichet, A.

A. Trichet, F. Médard, J. Zuniga-Perez, B. Alloing, and M. Richard, “From strong to weak coupling regime in a single GaN microwire up to room temperature,” New J. Phys. 14, 073004 (2012).
[Crossref]

A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
[Crossref]

Tsagaraki, K.

R. F. Jayaprakash, G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, “Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap,” Sci. Rep. 7, 5542 (2017).
[Crossref]

Tsotsis, P.

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

Tu, M.

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Valvin, P.

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

Vishnevsky, D.

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

von Högersthal, G. B. H.

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

Wang, F.

D. Saxena, F. Wang, Q. Gao, S. Mokkapati, H. H. Tan, and C. Jagadish, “Mode profiling of semiconductor nanowire lasers,” Nano Lett. 15, 5342–5348 (2015).
[Crossref]

Wang, J.

R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, and Q. Xiong, “Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites,” Sci. Adv. 4, eaau0244 (2018).
[Crossref]

Wang, Y.

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

Weiss, D. S.

T. Kinoshita, T. Wenger, and D. S. Weiss, “Observation of a one-dimensional Tonks-Girardeau gas,” Science 305, 1125–1128 (2004).
[Crossref]

Wenger, T.

T. Kinoshita, T. Wenger, and D. S. Weiss, “Observation of a one-dimensional Tonks-Girardeau gas,” Science 305, 1125–1128 (2004).
[Crossref]

Wertz, E.

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

West, K.

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Whiteley, R.

R. Jedicke, D. Nesvorny, R. Whiteley, Z. Z. Ivezic, and M. Juric, “An age–colour relationship for main-belt S-complex asteroids,” Nature 429, 275–277 (2004).
[Crossref]

Wille, M.

T. Michalsky, M. Wille, M. Grundmann, and R. Schmidt-Grund, “Spatiotemporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature,” Nano Lett. 18, 6820–6825 (2018).
[Crossref]

Wilson, L. R.

A. P. Foster, J. P. Bradley, K. Gardner, A. B. Krysa, B. Royall, M. S. Skolnick, and L. R. Wilson, “Linearly polarized emission from an embedded quantum dot using nanowire morphology control,” Nano Lett. 15, 1559–1563 (2015).
[Crossref]

Wouters, M.

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

M. Wouters, I. Carusotto, and C. Ciuti, “Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates,” Phys. Rev. B 77, 115340 (2008).
[Crossref]

Xiao, B.

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13, 2376–2380 (2013).
[Crossref]

Xie, S.

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Xie, W.

A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
[Crossref]

Xing, J.

R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, and Q. Xiong, “Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites,” Sci. Adv. 4, eaau0244 (2018).
[Crossref]

Xiong, Q.

R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, and Q. Xiong, “Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites,” Sci. Adv. 4, eaau0244 (2018).
[Crossref]

Zhang, C.

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Zhang, L.

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[Crossref]

Zhang, Q.

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Zhang, X.

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Zhao, D.

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Zhao, J.

R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, and Q. Xiong, “Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites,” Sci. Adv. 4, eaau0244 (2018).
[Crossref]

Zhao, W.

R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, and Q. Xiong, “Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites,” Sci. Adv. 4, eaau0244 (2018).
[Crossref]

Zhou, W.

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Zubia, D.

D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys. 85, 6492–6496 (1999).
[Crossref]

Zuniga-Perez, J.

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

A. Trichet, F. Médard, J. Zuniga-Perez, B. Alloing, and M. Richard, “From strong to weak coupling regime in a single GaN microwire up to room temperature,” New J. Phys. 14, 073004 (2012).
[Crossref]

ACS Photon. (1)

R. Tao, K. Kamide, M. Arita, S. Kako, and Y. Arakawa, “Room-temperature observation of trapped exciton-polariton emission in GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors,” ACS Photon. 3, 1182–1187 (2016).
[Crossref]

Appl. Phys. Lett. (1)

R. Johne, D. Solnyshkov, and G. Malpuech, “Theory of exciton-polariton lasing at room temperature in ZnO microcavities,” Appl. Phys. Lett. 93, 211105 (2008).
[Crossref]

C. R. Physique (1)

T. Guillet and C. Brimont, “Polariton condensates at room temperature,” C. R. Physique 17, 946–956 (2016).
[Crossref]

CrystEngComm (1)

S.-Y. Bae, B. O. Jung, K. Lekhal, S. Y. Kim, J. Y. Lee, D.-S. Lee, Y. Honda, and H. Amano, “Highly elongated vertical GaN nanorod arrays on Si substrates with an AlN seed layer by pulsed-mode metal-organic vapor deposition,” CrystEngComm 18, 1505–1514(2016).
[Crossref]

J. Appl. Phys. (1)

D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys. 85, 6492–6496 (1999).
[Crossref]

Nano Lett. (5)

A. P. Foster, J. P. Bradley, K. Gardner, A. B. Krysa, B. Royall, M. S. Skolnick, and L. R. Wilson, “Linearly polarized emission from an embedded quantum dot using nanowire morphology control,” Nano Lett. 15, 1559–1563 (2015).
[Crossref]

S.-H. Gong, S.-M. Ko, M.-H. Jang, and Y.-H. Cho, “Giant Rabi splitting of whispering gallery polaritons in GaN/InGaN core-shell wire,” Nano Lett. 15, 4517–4524 (2015).
[Crossref]

J. Heo, S. Jahangir, B. Xiao, and P. Bhattacharya, “Room-temperature polariton lasing from GaN nanowire array clad by dielectric microcavity,” Nano Lett. 13, 2376–2380 (2013).
[Crossref]

T. Michalsky, M. Wille, M. Grundmann, and R. Schmidt-Grund, “Spatiotemporal evolution of coherent polariton modes in ZnO microwire cavities at room temperature,” Nano Lett. 18, 6820–6825 (2018).
[Crossref]

D. Saxena, F. Wang, Q. Gao, S. Mokkapati, H. H. Tan, and C. Jagadish, “Mode profiling of semiconductor nanowire lasers,” Nano Lett. 15, 5342–5348 (2015).
[Crossref]

Nanoscale (1)

D. Zhao, C. Zhang, X. Zhang, L. Cai, X. Zhang, P. Luan, Q. Zhang, M. Tu, Y. Wang, W. Zhou, Z. Li, and S. Xie, “Substrate-induced effects on the optical properties of individual ZnO nanorods with different diameters,” Nanoscale 6, 483–491 (2014).
[Crossref]

Nat. Commun. (2)

D. Ballarini, M. D. Giorgi, E. Cancellieri, R. Houdré, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and D. Sanvitto, “All-optical polariton transistor,” Nat. Commun. 4, 1778 (2013).
[Crossref]

C. Sturm, D. Tanese, H. S. Nguyen, H. Flayac, E. Galopin, A. Lemaître, I. Sagnes, D. Solnyshkov, A. Amo, G. Malpuech, and J. Bloch, “All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer,” Nat. Commun. 5, 3278 (2014).
[Crossref]

Nat. Mater. (1)

D. Caputo, D. Ballarini, G. Dagvadorj, C. S. Muñoz, M. D. Giorgi, L. Dominici, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, M. H. Szymańska, and D. Sanvitto, “Topological order and thermal equilibrium in polariton condensates,” Nat. Mater. 17, 145–151 (2018).
[Crossref]

Nat. Nanotechnol. (1)

L. A. Jauregui, M. T. Pettes, L. P. Rokhinson, L. Shi, and Y. P. Chen, “Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon,” Nat. Nanotechnol. 11, 345–351 (2016).
[Crossref]

Nat. Photonics (2)

D. Sanvitto, S. Pigeon, A. Amo, D. Ballarini, M. D. Giorgi, I. Carusotto, R. Hivet, F. Pisanello, V. G. Sala, P. S. S. Guimaraes, R. Houdré, E. Giacobino, C. Ciuti, A. Bramati, and G. Gigli, “All-optical control of the quantum flow of a polariton condensate,” Nat. Photonics 5, 610–614 (2011).
[Crossref]

A. Amo, T. C. H. Liew, C. Adrados, R. Houdré, E. Giacobino, A. V. Kavokin, and A. Bramati, “Exciton–polariton spin switches,” Nat. Photonics 4, 361–366 (2010).
[Crossref]

Nat. Phys. (2)

G. Tosi, G. Christmann, N. G. Berloff, P. Tsotsis, T. Gao, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, “Sculpting oscillators with light within a nonlinear quantum fluid,” Nat. Phys. 8, 190–194 (2012).
[Crossref]

E. Wertz, L. Ferrier, D. D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, “Spontaneous formation and optical manipulation of extended polariton condensates,” Nat. Phys. 6, 860–864 (2010).
[Crossref]

Nature (2)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymańska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, “Bose–Einstein condensation of exciton polaritons,” Nature 443, 409–414 (2006).
[Crossref]

R. Jedicke, D. Nesvorny, R. Whiteley, Z. Z. Ivezic, and M. Juric, “An age–colour relationship for main-belt S-complex asteroids,” Nature 429, 275–277 (2004).
[Crossref]

New J. Phys. (1)

A. Trichet, F. Médard, J. Zuniga-Perez, B. Alloing, and M. Richard, “From strong to weak coupling regime in a single GaN microwire up to room temperature,” New J. Phys. 14, 073004 (2012).
[Crossref]

Phys. Rev. B (8)

F. Binet, J. Duboz, J. Off, and F. Scholz, “High-excitation photoluminescence in GaN: hot-carrier effects and the Mott transition,” Phys. Rev. B 60, 4715–4722 (1999).
[Crossref]

J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, and G. Malpuech, “Condensation phase diagram of cavity polaritons in GaN-based microcavities: experiment and theory,” Phys. Rev. B 81, 125305 (2010).
[Crossref]

M. Kaliteevski, S. Brand, R. Abram, A. Kavokin, and L. S. Dang, “Whispering gallery polaritons in cylindrical cavities,” Phys. Rev. B 75, 233309 (2007).
[Crossref]

M. Wouters, I. Carusotto, and C. Ciuti, “Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates,” Phys. Rev. B 77, 115340 (2008).
[Crossref]

R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80, 233301 (2009).
[Crossref]

A. Amo, S. Piegeon, C. Adrados, R. Houder, E. Giacobino, C. Ciuti, and A. Bramati, “Light engineering of the polariton landscape in semiconductor microcavities,” Phys. Rev. B 82, 081301 (2010).
[Crossref]

R. Hahe, C. Brimont, P. Valvin, T. Guillet, F. Li, M. Leroux, J. Zuniga-Perez, X. Lafosse, G. Patriarche, and S. Bouchoule, “Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity,” Phys. Rev. B 92, 235308 (2015).
[Crossref]

A. Trichet, L. Sun, G. Pavlovic, N. A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and L. S. Dang, “One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature,” Phys. Rev. B 83, 041302 (2011).
[Crossref]

Phys. Rev. Lett. (9)

F. Li, L. Orosz, O. Kamoun, S. Bouchoule, C. Brimont, P. Disseix, T. Guillet, X. Lafosse, M. Leroux, J. Leymarie, M. Mexis, M. Mihailovic, G. Patriarche, F. Réveret, D. Solnyshkov, J. Zuniga-Perez, and G. Malpuech, “From excitonic to photonic polariton condensate in a ZnO-based microcavity,” Phys. Rev. Lett. 110, 196406 (2013).
[Crossref]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992).
[Crossref]

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, “Realization of a double-barrier resonant tunneling diode for cavity polaritons,” Phys. Rev. Lett. 110, 236601 (2013).
[Crossref]

M. Richard, J. Kasprzak, R. Romestain, R. André, and L. S. Dang, “Spontaneous coherent phase transition of polaritons in CdTe microcavities,” Phys. Rev. Lett. 94, 187401 (2005).
[Crossref]

E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, “Polariton condensation in dynamic acoustic lattices,” Phys. Rev. Lett. 105, 116402 (2010).
[Crossref]

D. Ballarini, D. Caputo, C. S. Muñoz, M. D. Giorgi, L. Dominici, M. H. Szymańska, K. West, L. N. Pfeiffer, G. Gigli, F. P. Laussy, and D. Sanvitto, “Macroscopic two-dimensional polariton condensates,” Phys. Rev. Lett. 118, 215301 (2017).
[Crossref]

A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, and P. Bhattacharya, “Room temperature ultralow threshold GaN nanowire polariton laser,” Phys. Rev. Lett. 107, 066405 (2011).
[Crossref]

S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room-temperature polariton lasing in semiconductor microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[Crossref]

J. Levrat, R. Butté, T. Christian, M. Glauser, E. Feltin, J.-F. Carlin, N. Grandjean, D. Read, A. V. Kavokin, and Y. G. Rubo, “Pinning and depinning of the polarization of exciton-polariton condensates at room temperature,” Phys. Rev. Lett. 104, 166402 (2010).
[Crossref]

Phys. Rev. X (1)

B. Nelsen, G. Liu, M. Steger, D. W. Snoke, R. Balili, K. West, and L. Pfeiffer, “Dissipationless flow and sharp threshold of a polariton condensate with long lifetime,” Phys. Rev. X 3, 041015 (2013).
[Crossref]

Sci. Adv. (1)

R. Su, J. Wang, J. Zhao, J. Xing, W. Zhao, C. Diederichs, T. C. H. Liew, and Q. Xiong, “Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites,” Sci. Adv. 4, eaau0244 (2018).
[Crossref]

Sci. Rep. (1)

R. F. Jayaprakash, G. Kalaitzakis, G. Christmann, K. Tsagaraki, M. Hocevar, B. Gayral, E. Monroy, and N. T. Pelekanos, “Ultra-low threshold polariton lasing at room temperature in a GaN membrane microcavity with a zero-dimensional trap,” Sci. Rep. 7, 5542 (2017).
[Crossref]

Science (2)

T. Kinoshita, T. Wenger, and D. S. Weiss, “Observation of a one-dimensional Tonks-Girardeau gas,” Science 305, 1125–1128 (2004).
[Crossref]

R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein condensation of microcavity polaritons in a trap,” Science 316, 1007–1010 (2007).
[Crossref]

Supplementary Material (1)

NameDescription
» Supplement 1       Details on 1) Material and method, 2) Hexagonal cavity system, 3) Hopfield coefficients, 4) Photonic lasing transition, 5) Large Rabi splitting, 6) Control of potential landscape, 7) Polarization, 8)Identification of mode, 9) Tail fitting

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. GaN wire as a one-dimensional microcavity with tri-WGM. (a) Schematics of undoped GaN wires grown by selective area growth (b) a bird’s-eye view SEM image of GaN wires, (c) HAADF-STEM image of a cross section of a single GaN wire. The scale bar indicates 200 nm. (d) FDTD simulation, showing the variation of the Q factor for the tri-WGM with the artificial link in relation to the distance between the wire surface and the link, (e) the spatial profile of the CL intensity of a conventional GaN film (top) and a high-quality single wire (bottom), (f) schematics of a tri-WG polariton with the potential landscape (white solid line) in real space (y, z) and energy (vertical axis).
Fig. 2.
Fig. 2. Strong coupling and behavior of polariton condensate. (a) Schematic of polarizations and angles of the wire. (b) Polarization-resolved ARPL image on a linear scale. The green dashed-dotted lines show the A-exciton (XA), B-exciton (XB), and C-exciton (XC). The white dashed-dotted lines and red dashed lines show calculated dispersions of pure tri-WGM cavity photons (CPs) in the weak-coupling regime and tri-WG lower polaritons (LPs) in the strong-coupling regime, respectively. (c) Position-dependent μPL image along the c axis for TM on a linear scale via excitation of 200 nm diameter, (d) variation of linewidth (top left) and peak shift (top right) with excitation power density for LP35; integrated PL intensity (bottom) from LP35 to the new peak, (e) normalized spectra in relation to pump power. Note the appearance of a new peak at the second threshold.
Fig. 3.
Fig. 3. Identification of photonic mode by the multiple-slit interference methods. (a) Schematics of the cross section of the tri-WGM. Four red circles indicate strong leakage points. (b) FDTD simulated data (left) and measured data (right) at 2.0 Pth. The red box represents the interference pattern of the tri-WGM in momentum space.
Fig. 4.
Fig. 4. ARPL via optical manipulation of the potential landscape. (a), (b) Panchromatic image by excitation with a diameter of (a) 2000 nm and (b) 200 nm on the same wire. The scale bars indicate 4 μm. (c)–(e) Power-dependent ARPL via excitation with a diameter of 2000 nm for TM. Note the appearance of polaritonic condensate at zero degrees in dashed circle S. (f)–(h) Power-dependent angle-resolved PL via excitation with a diameter of 200 nm for TM. Note the appearance of extended polaritonic condensate in circle M1 and M2 on the polariton branch.
Fig. 5.
Fig. 5. Manipulation of finite momentum for an extended polariton condensate. (a) Panchromatic image of the same wire at 3.0 Pth on a log scale (top). Scale bar indicates 4 μm. Spectrally and spatially resolved emission at 3.0 Pth on a log scale (bottom). (b) The spatial profile of laser, XC, and extended polariton condensate in relation to pump power. Left and right sides are toward Vlow and Vhigh, respectively. (c) Polariton energy in relation to polariton momentum. The solid line shows calculated dispersion, and the colored triangles and circles show experiment data extracted from ARPL. (d) Corresponding Hopfield coefficient for exciton fraction (orange) and photon fraction (green) from the calculated dispersion, (e) polariton velocity (blue) and polariton lifetime (red) deduced by the LP35 branch, (f) solid line shoes υg×τp deduced from ARPL, and colored diamonds and squares show fitted data extracted from SRPL by the tail fitting of far outside approximation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

(Eph(θ)Ω1/2Ω2/2Ω1/2Xi0Ω2/20Xj)(αβγ)=Epol(θ)(αβγ).
iψ(r)t={E022mr2+g|ψ(r)|2+gXnR(r)+i2[R[nR(r)]γp]+Vdis(r)}ψ(r).
22m2z2ψ(z)+{(ωcωo)+i2τp}ψ(z)+αzψ(z)=0,
I=|ψ(z)|2=|c×Ai(kc2+ikcυg×τp+kc2ΔEαz(kc2ΔEαz)23)|2.

Metrics