Abstract

In order to enhance LIDAR performance metrics such as target detection sensitivity, noise resilience, and ranging accuracy, we exploit the strong temporal correlation within the photon pairs generated in continuous-wave pumped semiconductor waveguides. The enhancement attained through the use of such non-classical sources is measured and compared to a corresponding target detection scheme based on simple photon-counting detection. The performances of both schemes are quantified by the estimation uncertainty and Fisher information of the probe photon transmission, which is a widely adopted sensing figure of merit. The target detection experiments are conducted with high probe channel loss (15×105) and formidable environment noise up to 36 dB stronger than the detected probe power of 1.64×105pW. The experimental result shows significant advantages offered by the enhanced scheme with up to 26.3 dB higher performance in terms of estimation uncertainty, which is equivalent to a reduction of target detection time by a factor of 430 or 146 (21.6 dB) times more resilience to noise. We also experimentally demonstrated ranging with these non-classical photon pairs generated with a continuous-wave pump in the presence of strong noise and loss, achieving 5cm distance resolution that is limited by the temporal resolution of the detectors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffice to beat the shot-noise limit

Qiang Wang, Lili Hao, Yong Zhang, Lu Xu, Chenghua Yang, Xu Yang, and Yuan Zhao
Opt. Express 24(5) 5045-5056 (2016)

Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue
Opt. Express 15(21) 13957-13964 (2007)

High-performance source of spectrally pure, polarization entangled photon pairs based on hybrid integrated-bulk optics

Evan Meyer-Scott, Nidhin Prasannan, Christof Eigner, Viktor Quiring, John M. Donohue, Sonja Barkhofen, and Christine Silberhorn
Opt. Express 26(25) 32475-32490 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
    [Crossref]
  2. G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
    [Crossref]
  3. E. Losero, I. Ruo-Berchera, A. Meda, A. Avella, and M. Genovese, “Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams,” Sci. Rep. 8, 7431 (2018).
    [Crossref]
  4. I. Takai, H. Matsubara, M. Soga, M.-S. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors 16, 459 (2016).
    [Crossref]
  5. S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumination,” Science 321, 1463–1465 (2008).
    [Crossref]
  6. Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro, “Entanglement-enhanced sensing in a lossy and noisy environment,” Phys. Rev. Lett. 114, 110506 (2015).
    [Crossref]
  7. E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Oli-vares, G. Brida, and M. Genovese, “Experimental realization of quantum illumination,” Phys. Rev. Lett. 110, 153603 (2013).
    [Crossref]
  8. D. G. England, B. Balaji, and B. J. Sussman, “Quantum-enhanced standoff detection using correlated photon pairs,” Phys. Rev. A 99, 023828 (2019).
    [Crossref]
  9. D. Kang, A. Anirban, and A. S. Helmy, “Monolithic semiconductor chips as a source for broadband wavelength-multiplexed polarization entangled photons,” Opt. Express 24, 15160–15170 (2016).
    [Crossref]
  10. D. Kang, M. Kim, H. He, and A. S. Helmy, “Two polarization-entangled sources from the same semiconductor chip,” Phys. Rev. A 92, 013821 (2015).
    [Crossref]
  11. R. Horn, P. Abolghasem, B. J. Bijlani, D.-P. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
    [Crossref]
  12. A. Vallés, M. Hendrych, J. Svozilík, R. Machulka, P. Abolghasem, D. Kang, B. J. Bijlani, A. S. Helmy, and J. P. Torres, “Generation of polarization-entangled photon pairs in a Bragg reflection waveguide,” Opt. Express 21, 10841–10849 (2013).
    [Crossref]
  13. P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009).
    [Crossref]
  14. M. Sanz, U. L. Heras, J. J. García-Ripoll, E. Solano, and R. D. Candia, “Quantum estimation methods for quantum illumination,” Phys. Rev. Lett. 118, 070803 (2017).
    [Crossref]
  15. R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. OBrien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
    [Crossref]
  16. H. Cramér, Mathematical Methods of Statistics (Princeton University, 1999), Vol. 9.
  17. J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
    [Crossref]
  18. B. Huttner, S. Serulnik, and Y. Ben-Aryeh, “Quantum analysis of light propagation in a parametric amplifier,” Phys. Rev. A 42, 5594–5600 (1990).
    [Crossref]
  19. A. Ly, M. Marsman, J. Verhagen, R. P. P. P. Grasman, and E.-J. Wagenmakers, “A tutorial on fisher information,” J. Math. Psych. 80, 40–55 (2017).
    [Crossref]
  20. I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
    [Crossref]
  21. F. Xu, J. H. Shapiro, and F. N. C. Wong, “Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring,” Optica 3, 1266–1269 (2016).
    [Crossref]
  22. C. W. S. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, “Quantum-enhanced noise radar,” Appl. Phys. Lett. 114, 112601 (2019).
    [Crossref]

2019 (2)

D. G. England, B. Balaji, and B. J. Sussman, “Quantum-enhanced standoff detection using correlated photon pairs,” Phys. Rev. A 99, 023828 (2019).
[Crossref]

C. W. S. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, “Quantum-enhanced noise radar,” Appl. Phys. Lett. 114, 112601 (2019).
[Crossref]

2018 (1)

E. Losero, I. Ruo-Berchera, A. Meda, A. Avella, and M. Genovese, “Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams,” Sci. Rep. 8, 7431 (2018).
[Crossref]

2017 (4)

M. Sanz, U. L. Heras, J. J. García-Ripoll, E. Solano, and R. D. Candia, “Quantum estimation methods for quantum illumination,” Phys. Rev. Lett. 118, 070803 (2017).
[Crossref]

R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. OBrien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

A. Ly, M. Marsman, J. Verhagen, R. P. P. P. Grasman, and E.-J. Wagenmakers, “A tutorial on fisher information,” J. Math. Psych. 80, 40–55 (2017).
[Crossref]

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

2016 (3)

2015 (2)

D. Kang, M. Kim, H. He, and A. S. Helmy, “Two polarization-entangled sources from the same semiconductor chip,” Phys. Rev. A 92, 013821 (2015).
[Crossref]

Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro, “Entanglement-enhanced sensing in a lossy and noisy environment,” Phys. Rev. Lett. 114, 110506 (2015).
[Crossref]

2013 (3)

E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Oli-vares, G. Brida, and M. Genovese, “Experimental realization of quantum illumination,” Phys. Rev. Lett. 110, 153603 (2013).
[Crossref]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

A. Vallés, M. Hendrych, J. Svozilík, R. Machulka, P. Abolghasem, D. Kang, B. J. Bijlani, A. S. Helmy, and J. P. Torres, “Generation of polarization-entangled photon pairs in a Bragg reflection waveguide,” Opt. Express 21, 10841–10849 (2013).
[Crossref]

2012 (1)

R. Horn, P. Abolghasem, B. J. Bijlani, D.-P. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref]

2010 (1)

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

2009 (1)

2008 (1)

S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumination,” Science 321, 1463–1465 (2008).
[Crossref]

1992 (1)

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref]

1990 (1)

B. Huttner, S. Serulnik, and Y. Ben-Aryeh, “Quantum analysis of light propagation in a parametric amplifier,” Phys. Rev. A 42, 5594–5600 (1990).
[Crossref]

Aasi, J.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

Abadie, J.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

Abbott, B. P.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

Abbott, R.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

Abbott, T. D.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

Abernathy, M. R.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

Abolghasem, P.

Adams, C.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

Adams, T.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

Addesso, P.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

Adhikari, R. X.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

Affeldt, C.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

Anirban, A.

Avella, A.

E. Losero, I. Ruo-Berchera, A. Meda, A. Avella, and M. Genovese, “Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams,” Sci. Rep. 8, 7431 (2018).
[Crossref]

Balaji, B.

D. G. England, B. Balaji, and B. J. Sussman, “Quantum-enhanced standoff detection using correlated photon pairs,” Phys. Rev. A 99, 023828 (2019).
[Crossref]

C. W. S. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, “Quantum-enhanced noise radar,” Appl. Phys. Lett. 114, 112601 (2019).
[Crossref]

Ben-Aryeh, Y.

B. Huttner, S. Serulnik, and Y. Ben-Aryeh, “Quantum analysis of light propagation in a parametric amplifier,” Phys. Rev. A 42, 5594–5600 (1990).
[Crossref]

Berchera, I. R.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

Berry, M.

R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. OBrien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Bijlani, B. J.

Bourassa, J.

C. W. S. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, “Quantum-enhanced noise radar,” Appl. Phys. Lett. 114, 112601 (2019).
[Crossref]

Brida, G.

E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Oli-vares, G. Brida, and M. Genovese, “Experimental realization of quantum illumination,” Phys. Rev. Lett. 110, 153603 (2013).
[Crossref]

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

Bulgarini, G.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Cable, H.

R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. OBrien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Candia, R. D.

M. Sanz, U. L. Heras, J. J. García-Ripoll, E. Solano, and R. D. Candia, “Quantum estimation methods for quantum illumination,” Phys. Rev. Lett. 118, 070803 (2017).
[Crossref]

Chang, C. W. S.

C. W. S. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, “Quantum-enhanced noise radar,” Appl. Phys. Lett. 114, 112601 (2019).
[Crossref]

Cramér, H.

H. Cramér, Mathematical Methods of Statistics (Princeton University, 1999), Vol. 9.

Degiovanni, I. P.

E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Oli-vares, G. Brida, and M. Genovese, “Experimental realization of quantum illumination,” Phys. Rev. Lett. 110, 153603 (2013).
[Crossref]

Dobrovolskiy, S. M.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Dorenbos, S. N.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

England, D. G.

D. G. England, B. Balaji, and B. J. Sussman, “Quantum-enhanced standoff detection using correlated photon pairs,” Phys. Rev. A 99, 023828 (2019).
[Crossref]

Erven, C.

R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. OBrien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Franson, J. D.

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref]

García-Ripoll, J. J.

M. Sanz, U. L. Heras, J. J. García-Ripoll, E. Solano, and R. D. Candia, “Quantum estimation methods for quantum illumination,” Phys. Rev. Lett. 118, 070803 (2017).
[Crossref]

Genovese, M.

E. Losero, I. Ruo-Berchera, A. Meda, A. Avella, and M. Genovese, “Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams,” Sci. Rep. 8, 7431 (2018).
[Crossref]

E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Oli-vares, G. Brida, and M. Genovese, “Experimental realization of quantum illumination,” Phys. Rev. Lett. 110, 153603 (2013).
[Crossref]

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

Gourgues, R. B. M.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Grasman, R. P. P. P.

A. Ly, M. Marsman, J. Verhagen, R. P. P. P. Grasman, and E.-J. Wagenmakers, “A tutorial on fisher information,” J. Math. Psych. 80, 40–55 (2017).
[Crossref]

He, H.

D. Kang, M. Kim, H. He, and A. S. Helmy, “Two polarization-entangled sources from the same semiconductor chip,” Phys. Rev. A 92, 013821 (2015).
[Crossref]

Helmy, A. S.

Hendrych, M.

Heras, U. L.

M. Sanz, U. L. Heras, J. J. García-Ripoll, E. Solano, and R. D. Candia, “Quantum estimation methods for quantum illumination,” Phys. Rev. Lett. 118, 070803 (2017).
[Crossref]

Horn, R.

R. Horn, P. Abolghasem, B. J. Bijlani, D.-P. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref]

Huttner, B.

B. Huttner, S. Serulnik, and Y. Ben-Aryeh, “Quantum analysis of light propagation in a parametric amplifier,” Phys. Rev. A 42, 5594–5600 (1990).
[Crossref]

Kang, D.

Kang, D.-P.

R. Horn, P. Abolghasem, B. J. Bijlani, D.-P. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref]

Kim, M.

D. Kang, M. Kim, H. He, and A. S. Helmy, “Two polarization-entangled sources from the same semiconductor chip,” Phys. Rev. A 92, 013821 (2015).
[Crossref]

Lloyd, S.

S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumination,” Science 321, 1463–1465 (2008).
[Crossref]

Lopaeva, E. D.

E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Oli-vares, G. Brida, and M. Genovese, “Experimental realization of quantum illumination,” Phys. Rev. Lett. 110, 153603 (2013).
[Crossref]

Los, J. W. N.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Losero, E.

E. Losero, I. Ruo-Berchera, A. Meda, A. Avella, and M. Genovese, “Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams,” Sci. Rep. 8, 7431 (2018).
[Crossref]

Ly, A.

A. Ly, M. Marsman, J. Verhagen, R. P. P. P. Grasman, and E.-J. Wagenmakers, “A tutorial on fisher information,” J. Math. Psych. 80, 40–55 (2017).
[Crossref]

Machulka, R.

Marsman, M.

A. Ly, M. Marsman, J. Verhagen, R. P. P. P. Grasman, and E.-J. Wagenmakers, “A tutorial on fisher information,” J. Math. Psych. 80, 40–55 (2017).
[Crossref]

Matsubara, H.

I. Takai, H. Matsubara, M. Soga, M.-S. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors 16, 459 (2016).
[Crossref]

Matthews, J. C. F.

R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. OBrien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Meda, A.

E. Losero, I. Ruo-Berchera, A. Meda, A. Avella, and M. Genovese, “Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams,” Sci. Rep. 8, 7431 (2018).
[Crossref]

Mouradian, S.

Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro, “Entanglement-enhanced sensing in a lossy and noisy environment,” Phys. Rev. Lett. 114, 110506 (2015).
[Crossref]

Neville, A.

R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. OBrien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

OBrien, J. L.

R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. OBrien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Ogawa, M.

I. Takai, H. Matsubara, M. Soga, M.-S. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors 16, 459 (2016).
[Crossref]

Ohta, M.-S.

I. Takai, H. Matsubara, M. Soga, M.-S. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors 16, 459 (2016).
[Crossref]

Oli-vares, S.

E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Oli-vares, G. Brida, and M. Genovese, “Experimental realization of quantum illumination,” Phys. Rev. Lett. 110, 153603 (2013).
[Crossref]

Ruo Berchera, I.

E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Oli-vares, G. Brida, and M. Genovese, “Experimental realization of quantum illumination,” Phys. Rev. Lett. 110, 153603 (2013).
[Crossref]

Ruo-Berchera, I.

E. Losero, I. Ruo-Berchera, A. Meda, A. Avella, and M. Genovese, “Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams,” Sci. Rep. 8, 7431 (2018).
[Crossref]

Sanz, M.

M. Sanz, U. L. Heras, J. J. García-Ripoll, E. Solano, and R. D. Candia, “Quantum estimation methods for quantum illumination,” Phys. Rev. Lett. 118, 070803 (2017).
[Crossref]

Serulnik, S.

B. Huttner, S. Serulnik, and Y. Ben-Aryeh, “Quantum analysis of light propagation in a parametric amplifier,” Phys. Rev. A 42, 5594–5600 (1990).
[Crossref]

Shapiro, J. H.

F. Xu, J. H. Shapiro, and F. N. C. Wong, “Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring,” Optica 3, 1266–1269 (2016).
[Crossref]

Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro, “Entanglement-enhanced sensing in a lossy and noisy environment,” Phys. Rev. Lett. 114, 110506 (2015).
[Crossref]

Shi, X.

Soga, M.

I. Takai, H. Matsubara, M. Soga, M.-S. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors 16, 459 (2016).
[Crossref]

Solano, E.

M. Sanz, U. L. Heras, J. J. García-Ripoll, E. Solano, and R. D. Candia, “Quantum estimation methods for quantum illumination,” Phys. Rev. Lett. 118, 070803 (2017).
[Crossref]

Steinmetz, V.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Sussman, B. J.

D. G. England, B. Balaji, and B. J. Sussman, “Quantum-enhanced standoff detection using correlated photon pairs,” Phys. Rev. A 99, 023828 (2019).
[Crossref]

Svozilík, J.

Takai, I.

I. Takai, H. Matsubara, M. Soga, M.-S. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors 16, 459 (2016).
[Crossref]

Torres, J. P.

Vadiraj, A. M.

C. W. S. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, “Quantum-enhanced noise radar,” Appl. Phys. Lett. 114, 112601 (2019).
[Crossref]

Vallés, A.

Verhagen, J.

A. Ly, M. Marsman, J. Verhagen, R. P. P. P. Grasman, and E.-J. Wagenmakers, “A tutorial on fisher information,” J. Math. Psych. 80, 40–55 (2017).
[Crossref]

Wagenmakers, E.-J.

A. Ly, M. Marsman, J. Verhagen, R. P. P. P. Grasman, and E.-J. Wagenmakers, “A tutorial on fisher information,” J. Math. Psych. 80, 40–55 (2017).
[Crossref]

Weihs, G.

R. Horn, P. Abolghasem, B. J. Bijlani, D.-P. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref]

Whittaker, R.

R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. OBrien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Wilson, C. M.

C. W. S. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, “Quantum-enhanced noise radar,” Appl. Phys. Lett. 114, 112601 (2019).
[Crossref]

Wong, F. N. C.

F. Xu, J. H. Shapiro, and F. N. C. Wong, “Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring,” Optica 3, 1266–1269 (2016).
[Crossref]

Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro, “Entanglement-enhanced sensing in a lossy and noisy environment,” Phys. Rev. Lett. 114, 110506 (2015).
[Crossref]

Xu, F.

Yamashita, T.

I. Takai, H. Matsubara, M. Soga, M.-S. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors 16, 459 (2016).
[Crossref]

Zadeh, I. E.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Zhang, Z.

Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro, “Entanglement-enhanced sensing in a lossy and noisy environment,” Phys. Rev. Lett. 114, 110506 (2015).
[Crossref]

Zwiller, V.

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

APL Photon. (1)

I. E. Zadeh, J. W. N. Los, R. B. M. Gourgues, V. Steinmetz, G. Bulgarini, S. M. Dobrovolskiy, V. Zwiller, and S. N. Dorenbos, “Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution,” APL Photon. 2, 111301 (2017).
[Crossref]

Appl. Phys. Lett. (1)

C. W. S. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, “Quantum-enhanced noise radar,” Appl. Phys. Lett. 114, 112601 (2019).
[Crossref]

J. Math. Psych. (1)

A. Ly, M. Marsman, J. Verhagen, R. P. P. P. Grasman, and E.-J. Wagenmakers, “A tutorial on fisher information,” J. Math. Psych. 80, 40–55 (2017).
[Crossref]

Nat. Photonics (2)

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and C. Affeldt, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nat. Photonics 7, 613–619 (2013).
[Crossref]

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4, 227–230 (2010).
[Crossref]

New J. Phys. (1)

R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. OBrien, H. Cable, and J. C. F. Matthews, “Absorption spectroscopy at the ultimate quantum limit from single-photon states,” New J. Phys. 19, 023013 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Phys. Rev. A (4)

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[Crossref]

B. Huttner, S. Serulnik, and Y. Ben-Aryeh, “Quantum analysis of light propagation in a parametric amplifier,” Phys. Rev. A 42, 5594–5600 (1990).
[Crossref]

D. Kang, M. Kim, H. He, and A. S. Helmy, “Two polarization-entangled sources from the same semiconductor chip,” Phys. Rev. A 92, 013821 (2015).
[Crossref]

D. G. England, B. Balaji, and B. J. Sussman, “Quantum-enhanced standoff detection using correlated photon pairs,” Phys. Rev. A 99, 023828 (2019).
[Crossref]

Phys. Rev. Lett. (4)

M. Sanz, U. L. Heras, J. J. García-Ripoll, E. Solano, and R. D. Candia, “Quantum estimation methods for quantum illumination,” Phys. Rev. Lett. 118, 070803 (2017).
[Crossref]

Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro, “Entanglement-enhanced sensing in a lossy and noisy environment,” Phys. Rev. Lett. 114, 110506 (2015).
[Crossref]

E. D. Lopaeva, I. Ruo Berchera, I. P. Degiovanni, S. Oli-vares, G. Brida, and M. Genovese, “Experimental realization of quantum illumination,” Phys. Rev. Lett. 110, 153603 (2013).
[Crossref]

R. Horn, P. Abolghasem, B. J. Bijlani, D.-P. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012).
[Crossref]

Sci. Rep. (1)

E. Losero, I. Ruo-Berchera, A. Meda, A. Avella, and M. Genovese, “Unbiased estimation of an optical loss at the ultimate quantum limit with twin-beams,” Sci. Rep. 8, 7431 (2018).
[Crossref]

Science (1)

S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumination,” Science 321, 1463–1465 (2008).
[Crossref]

Sensors (1)

I. Takai, H. Matsubara, M. Soga, M.-S. Ohta, M. Ogawa, and T. Yamashita, “Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems,” Sensors 16, 459 (2016).
[Crossref]

Other (1)

H. Cramér, Mathematical Methods of Statistics (Princeton University, 1999), Vol. 9.

Supplementary Material (1)

NameDescription
» Supplement 1       Supplement 1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Schematic of the experimental setup which is divided into two parts. The left part (green background) includes the probe photon source and detectors. Pump laser, Ti:sapphire CW laser at 783 nm; PBS, polarization beam-splitter; LPF, long-pass (>1200nm) filter to separate the SPDC photon pairs from the pump laser; SNSPD, dual-channel superconducting single-photon detector (top channel: the reference detector; bottom channel: the probe detector). Right part (blue background): probing of the target object and collection of the scattered photons. Target object: a piece of white paper with diffused reflection. The left and right parts are built on separate tables and are connected by single-mode fibers (yellow line with arrows).
Fig. 2.
Fig. 2. (a) Experimentally measured (error bar) and theoretically predicted (solid line) estimation variance Δ2η^p of the CDNC (orange) and CDC (black) scheme as a function of the noise flux νb with ηp=3.3×105 and ηr=17.8%, and ν=3.87MHz. The maximal CDNC to CDC discrepancy is 13.62% for different values of νb. The CW pump power is around 500 μW. Theoretical curves that correspond to the CDNC schemes with different coincidence windows Tc are also plotted in different colors. (b) The ratio between the estimation variance Δ2η^p of the CDNC and CDC scheme as a function of noise flux in (a). (c) Experimentally measured (error bar) and theoretically predicted (solid line) estimation variance of the CDNC and CDC schemes as a function of source probe flux ν with ηp=8.53×105 and ηr=17.4%, and νb=0.577MHz. The maximal CDNC to CDC discrepancy is 9.21% for different values of ν. The CW laser power is swept between zero and 1000 μW. Theoretical curves that correspond to the CDNC schemes with different coincidence windows Tc are also plotted in different colors. (d) The ratio between the estimation variance Δ2η^p of the CDNC and CDC schemes in (c). The error bars of plot (a) and (c) are obtained by calculating the standard deviation of the averages of the three different groups of 33 independent estimations.
Fig. 3.
Fig. 3. Top: estimated object distance (y axis) versus the physically measured target distance (x axis). Red error bar plot: the estimated object distance and its uncertainty. The uncertainty of the distance estimation is taken to be the FWHM of the η^p versus lp function. Grey solid curve: the reference curve y=x. In order to increase the ranging range, aluminum foil is used as the object for higher reflectivity. When the target is placed around 0.85 m away, the probe photon detection rate νηp is 26 Hz and the noise photon detection rate νb is 41.6 KHz. Bottom: estimated η^p as a function of probe round-trip path length. The five-part panel from top to bottom corresponds to physical target distances of 13, 32, 53, 68, and 85 cm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

|Ψ=|vac+ϕ(tptr)exp(iωp,0tpiωr,0tr)ap(tp)ar(tr)dtpdtr|vac,
Δt0=(+dtp|ϕ(tptr)|2+|ϕ(tptr)|2dtp(tptr)2)12.
ν=tr{ap(tp)ap(tp)|ΨΨ|}=+|ϕ(tptr)|2dtr,
tptr[(lplr)/cTc2,(lplr)/c+Tc2],
TcΔteff=2Δt+3Δt0,
Pc=ηrηpν+ηrνbνTc.
Pr=ηrνPcPp=νb+ηpνPc.
p(Np,Nr,Nc;τ)=f(Np,Ppτ)f(Nr,Prτ)f(Nc,Pcτ),
I=Np,Nr,Nc=0+p(Np,Nr,Nc;τ)(ηplogp(Np,Nr,Nc;τ))2,
=(ηr2ν2Pc+(1ηr)2ν2Pp+ηr2ν2Pr)τ.
Δ2η^p1I.

Metrics