Abstract

A practical sensor based on surface plasmon resonance in a ring-shaped core photonic crystal fiber was proposed. A thin Au film was coated on the designed PCF, which caused the occurrence of SPR on the PCF surface and greatly simplified the measurement process. The sensor’s performance has been investigated by the finite element method. The results show that the maximum wavelength sensitivity can reach 6900nm/RIU and the maximum amplitude sensitivity can reach 132RIU−1 in the analyte refractive index range from 1.33 to 1.41. The designed sensor has many advantages, such as high sensitivity, simple operation, anti-interference, remote transmission, and self-calibration, etc. Moreover, it can work in the near infrared region, which makes it highly applicable in the biomedical domain.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetrical photonic crystal fiber based plasmonic sensor using the lower birefringence peak method

Mohammad Al Mahfuz, Md. Rabiul Hasan, Moriom Rojy Momota, Al Masud, and Sanjida Akter
OSA Continuum 2(5) 1713-1725 (2019)

D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating

Junjie Lu, Yan Li, Yanhua Han, Yi Liu, and Jianmin Gao
Appl. Opt. 57(19) 5268-5272 (2018)

Highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance sensor with a silver nano-continuous grating

Shengxi Jiao, Sanfeng Gu, Hanrui Yang, Hairui Fang, and Shibo Xu
Appl. Opt. 57(28) 8350-8358 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities,” Sensors (Basel) 15(2), 4242–4252 (2015).
    [Crossref] [PubMed]
  2. G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1-3), 31–36 (1995).
    [Crossref]
  3. J. N. Dash and R. Jha, “Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
    [Crossref]
  4. Y. Zhao, M. Lei, S. X. Liu, and Q. Zhao, “Smart Hydrogel-based Optical Fiber SPR Sensor for pH Measurements,” Sens. Actuators B Chem. 261, 226–232 (2018).
    [Crossref]
  5. D. F. Santos, A. Guerreiro, and J. M. Baptista, “SPR Microstructured D-Type Optical Fiber Sensor Configuration for Refractive Index Measurement,” IEEE Sens. J. 15(10), 5472–5477 (2015).
    [Crossref]
  6. M. Janik, A. Mysliwiec, M. Koba, A. Celebanska, W. Bock, and M. Smietana, “Sensitivity pattern of femtosecond laser micromachined and plasma-processed in-fiber Mach-Zehnder interferometers, as applied to small-scale refractive index sensing,” IEEE Sensors Journal (2017), in press.
  7. G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
    [Crossref]
  8. C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
    [Crossref]
  9. N. Cennamo, L. D. Maria, C. Chemelli, P. Zuppella, M. G. Pelizzo, A. J. Corso, M. Pesavento, F. Mattiello, and L. Zeni, “SPR sensors based on bilayer metals in a D-shaped plastic optical fiber: Analysis and experimental results with different metals,” 18th Italian National Conference on Photonic Technologies (Fotonica 2016), Rome, 2016, pp. 1-4..
  10. A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile Optical Fiber Nanoprobes: From Plasmonic Biosensors to Polarization-Sensitive Devices,” ACS Photonics 1(1), 69–78 (2014).
    [Crossref]
  11. X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  12. A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
    [Crossref]
  13. D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
    [Crossref]
  14. A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels And Graphene-Silver Deposited Core,” Sensors (Basel) 15(5), 11499–11510 (2015).
    [Crossref] [PubMed]
  15. T. Biswas, R. Chattopadhyay, and S. K. Bhadra, “Plasmonic hollow-core photonic band gap fiber for efficient sensing of biofluids,” J. Opt. 16(4), 045001 (2014).
    [Crossref]
  16. X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(7), 17106–17114 (2015).
    [Crossref] [PubMed]
  17. Y. Lu, J. Yao, X. Yang, and M. Wang, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
    [Crossref]
  18. R. Otupiri, E. K. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Express 23(12), 15716–15727 (2015).
    [Crossref] [PubMed]
  19. S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
    [Crossref]
  20. N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
    [Crossref] [PubMed]
  21. Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the Sensitivity of Fiber Surface Plasmon Resonance Sensor by Filling Liquid in a Hollow Core Photonic Crystal Fiber,” Plasmonics 9(1), 167–173 (2014).
    [Crossref]
  22. J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics 10(5), 1123–1131 (2015).
    [Crossref]
  23. A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-Graphene-Based Photonic Crystal Fiber Plasmonic Biosensor,” IEEE Photonics J. 8(1), 1–8 (2016).
    [Crossref]
  24. A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
    [Crossref]
  25. G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
    [Crossref]
  26. P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
    [Crossref] [PubMed]
  27. J. Chen, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Proceedings of SPIE - The International Society for Optical Engineering 7750, 77502K (2010).

2018 (1)

Y. Zhao, M. Lei, S. X. Liu, and Q. Zhao, “Smart Hydrogel-based Optical Fiber SPR Sensor for pH Measurements,” Sens. Actuators B Chem. 261, 226–232 (2018).
[Crossref]

2017 (2)

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

2016 (3)

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

J. N. Dash and R. Jha, “Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-Graphene-Based Photonic Crystal Fiber Plasmonic Biosensor,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

2015 (10)

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
[Crossref] [PubMed]

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels And Graphene-Silver Deposited Core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(7), 17106–17114 (2015).
[Crossref] [PubMed]

Y. Lu, J. Yao, X. Yang, and M. Wang, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

R. Otupiri, E. K. Akowuah, and S. Haxha, “Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications,” Opt. Express 23(12), 15716–15727 (2015).
[Crossref] [PubMed]

D. F. Santos, A. Guerreiro, and J. M. Baptista, “SPR Microstructured D-Type Optical Fiber Sensor Configuration for Refractive Index Measurement,” IEEE Sens. J. 15(10), 5472–5477 (2015).
[Crossref]

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
[Crossref]

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities,” Sensors (Basel) 15(2), 4242–4252 (2015).
[Crossref] [PubMed]

2014 (5)

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile Optical Fiber Nanoprobes: From Plasmonic Biosensors to Polarization-Sensitive Devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

T. Biswas, R. Chattopadhyay, and S. K. Bhadra, “Plasmonic hollow-core photonic band gap fiber for efficient sensing of biofluids,” J. Opt. 16(4), 045001 (2014).
[Crossref]

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the Sensitivity of Fiber Surface Plasmon Resonance Sensor by Filling Liquid in a Hollow Core Photonic Crystal Fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

2012 (1)

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

2011 (1)

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

1995 (1)

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1-3), 31–36 (1995).
[Crossref]

Adikan, F. R.

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels And Graphene-Silver Deposited Core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Adikan, F. R. M.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Ahmed, R.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-Graphene-Based Photonic Crystal Fiber Plasmonic Biosensor,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels And Graphene-Silver Deposited Core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Akowuah, E. K.

Amirkhan, F.

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Amouzad Mahdiraji, G.

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Avino, S.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities,” Sensors (Basel) 15(2), 4242–4252 (2015).
[Crossref] [PubMed]

Azzam, S. I.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Baptista, J. M.

D. F. Santos, A. Guerreiro, and J. M. Baptista, “SPR Microstructured D-Type Optical Fiber Sensor Configuration for Refractive Index Measurement,” IEEE Sens. J. 15(10), 5472–5477 (2015).
[Crossref]

Bhadra, S. K.

T. Biswas, R. Chattopadhyay, and S. K. Bhadra, “Plasmonic hollow-core photonic band gap fiber for efficient sensing of biofluids,” J. Opt. 16(4), 045001 (2014).
[Crossref]

Biswas, T.

T. Biswas, R. Chattopadhyay, and S. K. Bhadra, “Plasmonic hollow-core photonic band gap fiber for efficient sensing of biofluids,” J. Opt. 16(4), 045001 (2014).
[Crossref]

Butt, H.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Cella, L.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities,” Sensors (Basel) 15(2), 4242–4252 (2015).
[Crossref] [PubMed]

Chattopadhyay, R.

T. Biswas, R. Chattopadhyay, and S. K. Bhadra, “Plasmonic hollow-core photonic band gap fiber for efficient sensing of biofluids,” J. Opt. 16(4), 045001 (2014).
[Crossref]

Chen, Y.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the Sensitivity of Fiber Surface Plasmon Resonance Sensor by Filling Liquid in a Hollow Core Photonic Crystal Fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Chow, D. M.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-Graphene-Based Photonic Crystal Fiber Plasmonic Biosensor,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels And Graphene-Silver Deposited Core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Consales, M.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile Optical Fiber Nanoprobes: From Plasmonic Biosensors to Polarization-Sensitive Devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Crescitelli, A.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile Optical Fiber Nanoprobes: From Plasmonic Biosensors to Polarization-Sensitive Devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Cusano, A.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile Optical Fiber Nanoprobes: From Plasmonic Biosensors to Polarization-Sensitive Devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

D’Avino, V.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities,” Sensors (Basel) 15(2), 4242–4252 (2015).
[Crossref] [PubMed]

Dash, J. N.

J. N. Dash and R. Jha, “Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

De Natale, P.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities,” Sensors (Basel) 15(2), 4242–4252 (2015).
[Crossref] [PubMed]

Dermosesian, E.

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Esposito, E.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile Optical Fiber Nanoprobes: From Plasmonic Biosensors to Polarization-Sensitive Devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Fan, P.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the Sensitivity of Fiber Surface Plasmon Resonance Sensor by Filling Liquid in a Hollow Core Photonic Crystal Fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Fan, X.

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Gagliardi, G.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities,” Sensors (Basel) 15(2), 4242–4252 (2015).
[Crossref] [PubMed]

Gao, D.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Ghomeishi, M.

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Giorgini, A.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities,” Sensors (Basel) 15(2), 4242–4252 (2015).
[Crossref] [PubMed]

Guan, C.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Guerreiro, A.

D. F. Santos, A. Guerreiro, and J. M. Baptista, “SPR Microstructured D-Type Optical Fiber Sensor Configuration for Refractive Index Measurement,” IEEE Sens. J. 15(10), 5472–5477 (2015).
[Crossref]

Hameed, M. F. O.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Haxha, S.

Heikal, A. M.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Hnatowicz, V.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

Jha, R.

J. N. Dash and R. Jha, “Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

Jiang, S. Z.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Kakaei, Z.

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Lei, M.

Y. Zhao, M. Lei, S. X. Liu, and Q. Zhao, “Smart Hydrogel-based Optical Fiber SPR Sensor for pH Measurements,” Sens. Actuators B Chem. 261, 226–232 (2018).
[Crossref]

Li, C. H.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Li, X.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the Sensitivity of Fiber Surface Plasmon Resonance Sensor by Filling Liquid in a Hollow Core Photonic Crystal Fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Li, Z.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Liang, H.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
[Crossref]

Liao, C.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
[Crossref]

Liu, A. H.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Liu, S.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
[Crossref]

Liu, S. X.

Y. Zhao, M. Lei, S. X. Liu, and Q. Zhao, “Smart Hydrogel-based Optical Fiber SPR Sensor for pH Measurements,” Sens. Actuators B Chem. 261, 226–232 (2018).
[Crossref]

Liuzzi, R.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities,” Sensors (Basel) 15(2), 4242–4252 (2015).
[Crossref] [PubMed]

Lu, Y.

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(7), 17106–17114 (2015).
[Crossref] [PubMed]

Y. Lu, J. Yao, X. Yang, and M. Wang, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

Luan, N.

Lv, W.

Mahamd Adikan, F. R.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-Graphene-Based Photonic Crystal Fiber Plasmonic Biosensor,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Mahdiraji, G. A.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-Graphene-Based Photonic Crystal Fiber Plasmonic Biosensor,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels And Graphene-Silver Deposited Core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Malinský, P.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

Man, B. Y.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Obayya, S. S. A.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Otupiri, R.

Pacelli, R.

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities,” Sensors (Basel) 15(2), 4242–4252 (2015).
[Crossref] [PubMed]

Poh, S. Y.

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Quero, G.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile Optical Fiber Nanoprobes: From Plasmonic Biosensors to Polarization-Sensitive Devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Ricciardi, A.

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile Optical Fiber Nanoprobes: From Plasmonic Biosensors to Polarization-Sensitive Devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Rifat, A. A.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-Graphene-Based Photonic Crystal Fiber Plasmonic Biosensor,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels And Graphene-Silver Deposited Core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Robinson, G.

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1-3), 31–36 (1995).
[Crossref]

Sabouri, A.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Sandoghchi, S. R.

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Santos, D. F.

D. F. Santos, A. Guerreiro, and J. M. Baptista, “SPR Microstructured D-Type Optical Fiber Sensor Configuration for Refractive Index Measurement,” IEEE Sens. J. 15(10), 5472–5477 (2015).
[Crossref]

Shee, Y. G.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-Graphene-Based Photonic Crystal Fiber Plasmonic Biosensor,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels And Graphene-Silver Deposited Core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

Shehata, R. E. A.

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Slepicka, P.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

Sua, Y. M.

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-Graphene-Based Photonic Crystal Fiber Plasmonic Biosensor,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

Svorcík, V.

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

Tan, Z.

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the Sensitivity of Fiber Surface Plasmon Resonance Sensor by Filling Liquid in a Hollow Core Photonic Crystal Fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

Wang, C.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
[Crossref]

Wang, G.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
[Crossref]

Wang, M.

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(7), 17106–17114 (2015).
[Crossref] [PubMed]

Y. Lu, J. Yao, X. Yang, and M. Wang, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

Wang, M. H.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Wang, R.

Wang, Y.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
[Crossref]

Wen, Y.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

White, I. M.

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Xu, S. C.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Xu, X.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
[Crossref]

Yang, X.

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(7), 17106–17114 (2015).
[Crossref] [PubMed]

Y. Lu, J. Yao, X. Yang, and M. Wang, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

Yao, J.

Y. Lu, J. Yao, X. Yang, and M. Wang, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
[Crossref] [PubMed]

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(7), 17106–17114 (2015).
[Crossref] [PubMed]

Yeo, K. S.

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Yetisen, A. K.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Yin, G.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
[Crossref]

Yu, J.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Yu Gang, S.

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

Yuan, L.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Yun, S. H.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Zhang, C.

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

Zhao, J.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
[Crossref]

Zhao, Q.

Y. Zhao, M. Lei, S. X. Liu, and Q. Zhao, “Smart Hydrogel-based Optical Fiber SPR Sensor for pH Measurements,” Sens. Actuators B Chem. 261, 226–232 (2018).
[Crossref]

Zhao, Y.

Y. Zhao, M. Lei, S. X. Liu, and Q. Zhao, “Smart Hydrogel-based Optical Fiber SPR Sensor for pH Measurements,” Sens. Actuators B Chem. 261, 226–232 (2018).
[Crossref]

Zhong, X.

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

ACS Photonics (1)

A. Ricciardi, M. Consales, G. Quero, A. Crescitelli, E. Esposito, and A. Cusano, “Versatile Optical Fiber Nanoprobes: From Plasmonic Biosensors to Polarization-Sensitive Devices,” ACS Photonics 1(1), 69–78 (2014).
[Crossref]

Electron. Lett. (1)

Y. Lu, J. Yao, X. Yang, and M. Wang, “Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires,” Electron. Lett. 51(21), 1675–1677 (2015).
[Crossref]

Fiber Integr. Opt. (1)

G. Amouzad Mahdiraji, D. M. Chow, S. R. Sandoghchi, F. Amirkhan, E. Dermosesian, K. S. Yeo, Z. Kakaei, M. Ghomeishi, S. Y. Poh, S. Yu Gang, and F. R. Mahamd Adikan, “Challenges and Solutions in Fabrication of Silica-Based Photonic Crystal Fibers: An Experimental Study,” Fiber Integr. Opt. 33(1-2), 85–104 (2014).
[Crossref]

IEEE Photonics J. (1)

A. A. Rifat, G. A. Mahdiraji, R. Ahmed, D. M. Chow, Y. M. Sua, Y. G. Shee, and F. R. Mahamd Adikan, “Copper-Graphene-Based Photonic Crystal Fiber Plasmonic Biosensor,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett. 27(15), 1628–1631 (2015).
[Crossref]

IEEE Sens. J. (2)

D. F. Santos, A. Guerreiro, and J. M. Baptista, “SPR Microstructured D-Type Optical Fiber Sensor Configuration for Refractive Index Measurement,” IEEE Sens. J. 15(10), 5472–5477 (2015).
[Crossref]

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-Opened Suspended Core Fiber-Based Surface Plasmon Resonance Sensor,” IEEE Sens. J. 15(7), 4086–4092 (2015).
[Crossref]

J. Opt. (1)

T. Biswas, R. Chattopadhyay, and S. K. Bhadra, “Plasmonic hollow-core photonic band gap fiber for efficient sensing of biofluids,” J. Opt. 16(4), 045001 (2014).
[Crossref]

Nanoscale Res. Lett. (1)

P. Malinský, P. Slepička, V. Hnatowicz, and V. Svorčík, “Early stages of growth of gold layers sputter deposited on glass and silicon substrates,” Nanoscale Res. Lett. 7(1), 241 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Fan and I. M. White, “Optofluidic Microsystems for Chemical and Biological Analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

D. Gao, C. Guan, Y. Wen, X. Zhong, and L. Yuan, “Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths,” Opt. Commun. 313, 94–98 (2014).
[Crossref]

Opt. Express (2)

Opt. Quantum Electron. (1)

S. I. Azzam, M. F. O. Hameed, R. E. A. Shehata, A. M. Heikal, and S. S. A. Obayya, “Multichannel photonic crystal fiber surface plasmon resonance based sensor,” Opt. Quantum Electron. 48(2), 142 (2016).
[Crossref]

Plasmonics (3)

Z. Tan, X. Li, Y. Chen, and P. Fan, “Improving the Sensitivity of Fiber Surface Plasmon Resonance Sensor by Filling Liquid in a Hollow Core Photonic Crystal Fiber,” Plasmonics 9(1), 167–173 (2014).
[Crossref]

J. N. Dash and R. Jha, “On the Performance of Graphene-Based D-Shaped Photonic Crystal Fibre Biosensor Using Surface Plasmon Resonance,” Plasmonics 10(5), 1123–1131 (2015).
[Crossref]

J. N. Dash and R. Jha, “Highly Sensitive Side-Polished Birefringent PCF-Based SPR Sensor in near IR,” Plasmonics 11(6), 1505–1509 (2016).
[Crossref]

Sens. Actuators B Chem. (4)

Y. Zhao, M. Lei, S. X. Liu, and Q. Zhao, “Smart Hydrogel-based Optical Fiber SPR Sensor for pH Measurements,” Sens. Actuators B Chem. 261, 226–232 (2018).
[Crossref]

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators B Chem. 29(1-3), 31–36 (1995).
[Crossref]

C. Zhang, Z. Li, S. Z. Jiang, C. H. Li, S. C. Xu, J. Yu, Z. Li, M. H. Wang, A. H. Liu, and B. Y. Man, “U-bent fiber optic SPR sensor based on graphene/AgNPs,” Sens. Actuators B Chem. 251, 127–133 (2017).
[Crossref]

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. A. Mahdiraji, S. H. Yun, and F. R. M. Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Sensors (Basel) (3)

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. Adikan, “Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels And Graphene-Silver Deposited Core,” Sensors (Basel) 15(5), 11499–11510 (2015).
[Crossref] [PubMed]

X. Yang, Y. Lu, M. Wang, and J. Yao, “An Exposed-Core Grapefruit Fibers Based Surface Plasmon Resonance Sensor,” Sensors (Basel) 15(7), 17106–17114 (2015).
[Crossref] [PubMed]

S. Avino, V. D’Avino, A. Giorgini, R. Pacelli, R. Liuzzi, L. Cella, P. De Natale, and G. Gagliardi, “Ionizing radiation detectors based on Ge-doped optical fibers inserted in resonant cavities,” Sensors (Basel) 15(2), 4242–4252 (2015).
[Crossref] [PubMed]

Other (3)

N. Cennamo, L. D. Maria, C. Chemelli, P. Zuppella, M. G. Pelizzo, A. J. Corso, M. Pesavento, F. Mattiello, and L. Zeni, “SPR sensors based on bilayer metals in a D-shaped plastic optical fiber: Analysis and experimental results with different metals,” 18th Italian National Conference on Photonic Technologies (Fotonica 2016), Rome, 2016, pp. 1-4..

M. Janik, A. Mysliwiec, M. Koba, A. Celebanska, W. Bock, and M. Smietana, “Sensitivity pattern of femtosecond laser micromachined and plasma-processed in-fiber Mach-Zehnder interferometers, as applied to small-scale refractive index sensing,” IEEE Sensors Journal (2017), in press.

J. Chen, D. Brabant, W. J. Bock, P. Mikulic, and T. Eftimov, “Photonic crystal fiber refractive index sensor based on surface plasmon resonance,” Proceedings of SPIE - The International Society for Optical Engineering 7750, 77502K (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Design structure. (A) Cross-section of the proposed PCF’s stacked preform. (B) Cross-section of the proposed PCF. (C) FEM mesh. (D) Schematic diagram of the proposed sensor set-up.
Fig. 2
Fig. 2 Power distributions of core modes in the designed PCF. Red arrows represent the direction of electric field in d1 = 0.4Λ, Λ = 2μm, d2 = 40nm, na = 1.35, and λ = 1.55μm. (A) H E 11 x mode. (B) H E 11 y mode. (C) TE01 mode. (D) TM01 mode
Fig. 3
Fig. 3 Loss spectrum (red solid line) and effective RI (black dotted line) of core mode and SPP mode (black solid line). (A) H E 11 x mode. (B) TE01 mode. Inserts are the electric field distributions of resonance point
Fig. 4
Fig. 4 Loss curves of the designed PCF with 30nm, 40nm, and 50nm Au film, when the analyte RI is 1.35 or 1.36, respectively. (A) H E 11 x mode. (B) TE01 mode.
Fig. 5
Fig. 5 Loss curves of the designed PCF with 0.3, 0.4, and 0.5 d/Λ, when the analyte RI is 1.35 or 1.36, respectively. (A) H E 11 x mode. (B) TE01 mode.
Fig. 6
Fig. 6 Loss spectrums by varying the analyte RI from 1.33 to 1.41 (d1 = 0.8μm, d2 = 40nm, Λ = 2μm). (A) H E 11 x mode. (B) TE01 mode
Fig. 7
Fig. 7 Fitting curves of resonance wavelength with analyte RI. And the Red line is H E 11 x mode, the black line is TE01 mode.
Fig. 8
Fig. 8 Amplitude sensitivities of different mode by varying the analyte RI from 1.33 to 1.41. (A) H E 11 x mode. (B) TE01 mode.

Tables (1)

Tables Icon

Table 1 Comparison with former research

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

K z = ω c ε 0 sin θ
n ( λ ) = 1 + i = 1 m B i λ 2 λ 2 λ i
K s p w = Re [ ω c ε 1 ε 2 ε 1 + ε 2 ]
ε 1 = ε ω D 2 ω ( ω + j γ D ) Δ ε Ω L 2 ( ω 2 Ω L 2 ) + j Γ L ω
K = ω c n e f f
α ( d B / c m ) = 8.686 × 2 π λ Im ( n e f f ) × 10 4
S λ = d λ p e a k ( n a ) d n a
S A ( λ ) [ R I U 1 ] = 1 α ( λ , n a ) α ( λ , n a ) n a

Metrics