Abstract

We design and numerically investigate the high Q-factor, high modulation depth, and multiple Fano resonances based on a periodical all-dielectric asymmetric nanorod dimer in the near-infrared regime. It is demonstrated that, due to the excitation of the subradiant hybrid modes, five sharp Fano resonances can be achieved by breaking the symmetry of the dimer and can be flexibly tuned by varying the geometrical parameters. All five Fano resonances have a narrow line width, the maximal Q-factor exceeds 9700, and even the minimal Q-factor also reaches about 1090 in magnitude. Particularly, the modulation depth can reach nearly 100%. In addition, the maximal figure of merit reaches 5045. Considering the narrow line-width and significant near-field enhancement, five Fano resonances with large modulation depths in the proposed array are useful for lasing, nonlinear optics, and multiwavelength biosensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broken symmetry theta-shaped dielectric arrays for a high Q-factor Fano resonance with anapole excitation and magnetic field tunability

Wudeng Wang, Xin Zhao, Li Xiong, Li Zheng, Ying Shi, Yujie Liu, and Jianguang Qi
OSA Continuum 2(2) 507-517 (2019)

High-quality-factor multiple Fano resonances for refractive index sensing

Yuebian Zhang, Wenwei Liu, Zhancheng Li, Zhi Li, Hua Cheng, Shuqi Chen, and Jianguo Tian
Opt. Lett. 43(8) 1842-1845 (2018)

Numerical analysis of high-Q multiple Fano resonances

Wanying Li, Qi Lin, Xiang Zhai, and Lingling Wang
J. Opt. Soc. Am. B 35(11) 2699-2704 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
    [Crossref]
  2. J. Butet and O. J. Martin, “Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures,” Opt. Express 22(24), 29693 (2014).
    [Crossref]
  3. M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
    [Crossref]
  4. A. A. Siraji and Y. Zhao, “High-sensitivity and high-q-factor glass photonic crystal cavity and its applications as sensors,” Opt. Lett. 40(7), 1508 (2015).
    [Crossref]
  5. D. Finkelsteinshapiro, I. Urdaneta, M. Calatayud, O. Atabek, V. Mujica, and A. Keller, “Fano-Liouville Spectral Signatures in Open Quantum Systems,” Phys. Rev. Lett. 115(11), 113006 (2015).
    [Crossref]
  6. Y. Moritake, Y. Kanamori, and K. Hane, “Enhanced quality factor of fano resonance in optical metamaterials by manipulating configuration of unit cells,” Appl. Phys. Lett. 107(21), 211108 (2015).
    [Crossref]
  7. Z. Liu, W. Li, J. Li, and C. Gu, “Fano resonance rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
    [Crossref]
  8. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  9. B. Luk’Yanchuk, P. Nordlander, and H. Giessen, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref]
  10. X. B. W. Liu, X. Yao, L. Zhang, H. X. Lin, S. Chen, J. H. Zhong, and B. Ren, “Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances,” ACS Photonics 2(12), 1725–1731 (2015).
    [Crossref]
  11. S. Bakhti, N. Bonod, S. D. Dhuey, P. J. Schuck, and N. Destouches, “Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles,” Sci. Rep. 6(1), 32061 (2016).
    [Crossref]
  12. C. S. Sui, X. J. Li, T. T. Lang, X. F. Jing, and Z. Hong, “High Q-Factor Resonance in a Symmetric Array of All-Dielectric Bars,” Appl. Sci. 8(2), 161 (2018).
    [Crossref]
  13. Y. Tsuchimoto, T. A. Yano, T. Hayashi, and M. Hara, “Fano resonant all-dielectric core/shell nanoparticles with ultrahigh scattering directionality in the visible region,” Opt. Express 24(13), 14451 (2016).
    [Crossref]
  14. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref]
  15. D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, Z. H. Chen, and S. D. Liu, “Fano Resonances Generated in a Single Dielectric Homogeneous Nanoparticle with High Structural Symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
    [Crossref]
  16. V. R. Tuz, V. V. Khardikov, and Y. S. Kivshar, “All-dielectric resonant metasurfaces with a strong toroidal response,” ACS Photonics 5(5), 1871–1876 (2018).
    [Crossref]
  17. N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
    [Crossref]
  18. S. Q. Li and K. B. Crozier, “Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole,” Phys. Rev. B 97(24), 245423 (2018).
    [Crossref]
  19. N. Papasimakis, I. V. Fedotov, T. Kaelberer, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
    [Crossref]
  20. I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
    [Crossref]
  21. A. K. Ospanova, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
    [Crossref]
  22. N. A. Nemkov and A. A. Basharin, “Nontrivial nonradiating alldielectric anapole,” Sci. Rep. 7(1), 1064 (2017).
    [Crossref]
  23. A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, and A. I. Kuznetsov, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
    [Crossref]
  24. Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-Assisted Strong Field Enhancement in Individual All-Dielectric Nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
    [Crossref]
  25. A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, and Z. F. Sadrieva, “Bound states in the continuum and fano resonances in the strong mode coupling regime,” Adv. Photonics 1(01), 1 (2019).
    [Crossref]
  26. K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8(5), 725–745 (2019).
    [Crossref]
  27. M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
    [Crossref]
  28. A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, and V. R. Tuz, “Metasurface engineering through bound states in the continuum,” Phys. Rev. Appl. 12(1), 014024 (2019).
    [Crossref]
  29. K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
    [Crossref]
  30. S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, and T. S. Luk, “Broken symmetry dielectric resonators for high quality-factor fano metasurfaces,” ACS Photonics 3(12), 2362–2367 (2016).
    [Crossref]
  31. Y. Liu, Y. Luo, X. Jin, X. Zhou, K. Song, and X. Zhao, “High-Q Fano Resonances in Asymmetric and Symmetric All-Dielectric Metasurfaces,” Plasmonics 12(5), 1431–1438 (2017).
    [Crossref]
  32. G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating metaatom interactions,” Sci. Rep. 7(1), 8128 (2017).
    [Crossref]
  33. Y. Zhang, W. Liu, Z. Li, Z. Li, H. Cheng, and S. Chen, “High-quality-factor multiple fano resonances for refractive index sensing,” Opt. Lett. 43(8), 1842 (2018).
    [Crossref]
  34. W. Zhao, H. Jiang, B. Liu, Y. Jiang, C. Tang, and J. Li, “Fano resonance based optical modulator reaching 85% modulation depth,” Appl. Phys. Lett. 107(17), 171109 (2015).
    [Crossref]
  35. S. D. Liu, J. Deng, and J. H. Teng, “Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation,” ACS Nano 10(1), 1442–1453 (2016).
    [Crossref]
  36. A. Ahmadivand and N. Pala, “Multiple coil-type fano resonances in all-dielectric antisymmetric quadrumers,” Opt. Quantum Electron. 47(7), 2055–2064 (2015).
    [Crossref]
  37. C. Cui, C. Zhou, S. Yuan, X. Qiu, L. Zhu, Y. Wang, and J. Xia, “Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission,” ACS Photonics 5(10), 4074–4080 (2018).
    [Crossref]
  38. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985). Vol. I.
  39. T. Shibanuma, S. A. Maier, and P. Albella, “Polarization control of high transmission/reflection switching by all-dielectric metasurfaces,” Appl. Phys. Lett. 112(6), 063103 (2018).
    [Crossref]
  40. T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, and P. Albella, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
    [Crossref]
  41. J. Qi, Y. Xiang, W. Yan, M. Li, and Z. Chen, “The excitation of the tunable longitudinal higher-order multipole SPR modes by strong coupling in large-area metal sub-10nm-gap array structures and its application,” J. Phys. Chem. C 120(43), 24932–24940 (2016).
    [Crossref]
  42. Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum”, arXiv:1903.00309 (2019)
  43. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
    [Crossref]
  44. N. Talebi, S. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
    [Crossref]
  45. M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
    [Crossref]
  46. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1–2), 3–15 (1999).
    [Crossref]

2019 (3)

A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, and Z. F. Sadrieva, “Bound states in the continuum and fano resonances in the strong mode coupling regime,” Adv. Photonics 1(01), 1 (2019).
[Crossref]

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8(5), 725–745 (2019).
[Crossref]

A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, and V. R. Tuz, “Metasurface engineering through bound states in the continuum,” Phys. Rev. Appl. 12(1), 014024 (2019).
[Crossref]

2018 (11)

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Y. Zhang, W. Liu, Z. Li, Z. Li, H. Cheng, and S. Chen, “High-quality-factor multiple fano resonances for refractive index sensing,” Opt. Lett. 43(8), 1842 (2018).
[Crossref]

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-Assisted Strong Field Enhancement in Individual All-Dielectric Nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

S. Q. Li and K. B. Crozier, “Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole,” Phys. Rev. B 97(24), 245423 (2018).
[Crossref]

A. K. Ospanova, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
[Crossref]

C. S. Sui, X. J. Li, T. T. Lang, X. F. Jing, and Z. Hong, “High Q-Factor Resonance in a Symmetric Array of All-Dielectric Bars,” Appl. Sci. 8(2), 161 (2018).
[Crossref]

V. R. Tuz, V. V. Khardikov, and Y. S. Kivshar, “All-dielectric resonant metasurfaces with a strong toroidal response,” ACS Photonics 5(5), 1871–1876 (2018).
[Crossref]

C. Cui, C. Zhou, S. Yuan, X. Qiu, L. Zhu, Y. Wang, and J. Xia, “Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission,” ACS Photonics 5(10), 4074–4080 (2018).
[Crossref]

T. Shibanuma, S. A. Maier, and P. Albella, “Polarization control of high transmission/reflection switching by all-dielectric metasurfaces,” Appl. Phys. Lett. 112(6), 063103 (2018).
[Crossref]

N. Talebi, S. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
[Crossref]

M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
[Crossref]

2017 (8)

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, and P. Albella, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

Z. Liu, W. Li, J. Li, and C. Gu, “Fano resonance rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

N. A. Nemkov and A. A. Basharin, “Nontrivial nonradiating alldielectric anapole,” Sci. Rep. 7(1), 1064 (2017).
[Crossref]

I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
[Crossref]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref]

Y. Liu, Y. Luo, X. Jin, X. Zhou, K. Song, and X. Zhao, “High-Q Fano Resonances in Asymmetric and Symmetric All-Dielectric Metasurfaces,” Plasmonics 12(5), 1431–1438 (2017).
[Crossref]

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating metaatom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

2016 (7)

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, and T. S. Luk, “Broken symmetry dielectric resonators for high quality-factor fano metasurfaces,” ACS Photonics 3(12), 2362–2367 (2016).
[Crossref]

S. D. Liu, J. Deng, and J. H. Teng, “Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

S. Bakhti, N. Bonod, S. D. Dhuey, P. J. Schuck, and N. Destouches, “Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles,” Sci. Rep. 6(1), 32061 (2016).
[Crossref]

Y. Tsuchimoto, T. A. Yano, T. Hayashi, and M. Hara, “Fano resonant all-dielectric core/shell nanoparticles with ultrahigh scattering directionality in the visible region,” Opt. Express 24(13), 14451 (2016).
[Crossref]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

J. Qi, Y. Xiang, W. Yan, M. Li, and Z. Chen, “The excitation of the tunable longitudinal higher-order multipole SPR modes by strong coupling in large-area metal sub-10nm-gap array structures and its application,” J. Phys. Chem. C 120(43), 24932–24940 (2016).
[Crossref]

2015 (8)

D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, Z. H. Chen, and S. D. Liu, “Fano Resonances Generated in a Single Dielectric Homogeneous Nanoparticle with High Structural Symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

X. B. W. Liu, X. Yao, L. Zhang, H. X. Lin, S. Chen, J. H. Zhong, and B. Ren, “Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances,” ACS Photonics 2(12), 1725–1731 (2015).
[Crossref]

A. A. Siraji and Y. Zhao, “High-sensitivity and high-q-factor glass photonic crystal cavity and its applications as sensors,” Opt. Lett. 40(7), 1508 (2015).
[Crossref]

D. Finkelsteinshapiro, I. Urdaneta, M. Calatayud, O. Atabek, V. Mujica, and A. Keller, “Fano-Liouville Spectral Signatures in Open Quantum Systems,” Phys. Rev. Lett. 115(11), 113006 (2015).
[Crossref]

Y. Moritake, Y. Kanamori, and K. Hane, “Enhanced quality factor of fano resonance in optical metamaterials by manipulating configuration of unit cells,” Appl. Phys. Lett. 107(21), 211108 (2015).
[Crossref]

A. Ahmadivand and N. Pala, “Multiple coil-type fano resonances in all-dielectric antisymmetric quadrumers,” Opt. Quantum Electron. 47(7), 2055–2064 (2015).
[Crossref]

W. Zhao, H. Jiang, B. Liu, Y. Jiang, C. Tang, and J. Li, “Fano resonance based optical modulator reaching 85% modulation depth,” Appl. Phys. Lett. 107(17), 171109 (2015).
[Crossref]

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, and A. I. Kuznetsov, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref]

2014 (2)

J. Butet and O. J. Martin, “Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures,” Opt. Express 22(24), 29693 (2014).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

2010 (3)

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

B. Luk’Yanchuk, P. Nordlander, and H. Giessen, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

N. Papasimakis, I. V. Fedotov, T. Kaelberer, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

2008 (1)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1–2), 3–15 (1999).
[Crossref]

Ahmadivand, A.

A. Ahmadivand and N. Pala, “Multiple coil-type fano resonances in all-dielectric antisymmetric quadrumers,” Opt. Quantum Electron. 47(7), 2055–2064 (2015).
[Crossref]

Albella, P.

T. Shibanuma, S. A. Maier, and P. Albella, “Polarization control of high transmission/reflection switching by all-dielectric metasurfaces,” Appl. Phys. Lett. 112(6), 063103 (2018).
[Crossref]

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, and P. Albella, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Atabek, O.

D. Finkelsteinshapiro, I. Urdaneta, M. Calatayud, O. Atabek, V. Mujica, and A. Keller, “Fano-Liouville Spectral Signatures in Open Quantum Systems,” Phys. Rev. Lett. 115(11), 113006 (2015).
[Crossref]

Bakhti, S.

S. Bakhti, N. Bonod, S. D. Dhuey, P. J. Schuck, and N. Destouches, “Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles,” Sci. Rep. 6(1), 32061 (2016).
[Crossref]

Bakker, R. M.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, and A. I. Kuznetsov, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref]

Basharin, A. A.

A. K. Ospanova, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
[Crossref]

N. A. Nemkov and A. A. Basharin, “Nontrivial nonradiating alldielectric anapole,” Sci. Rep. 7(1), 1064 (2017).
[Crossref]

I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
[Crossref]

Basilio, L. I.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, and T. S. Luk, “Broken symmetry dielectric resonators for high quality-factor fano metasurfaces,” ACS Photonics 3(12), 2362–2367 (2016).
[Crossref]

Bogdanov, A.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8(5), 725–745 (2019).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum”, arXiv:1903.00309 (2019)

Bogdanov, A. A.

A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, and Z. F. Sadrieva, “Bound states in the continuum and fano resonances in the strong mode coupling regime,” Adv. Photonics 1(01), 1 (2019).
[Crossref]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref]

Bonod, N.

S. Bakhti, N. Bonod, S. D. Dhuey, P. J. Schuck, and N. Destouches, “Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles,” Sci. Rep. 6(1), 32061 (2016).
[Crossref]

Bozhevolnyi, S. I.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-Assisted Strong Field Enhancement in Individual All-Dielectric Nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Butet, J.

Cai, D. J.

D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, Z. H. Chen, and S. D. Liu, “Fano Resonances Generated in a Single Dielectric Homogeneous Nanoparticle with High Structural Symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Calatayud, M.

D. Finkelsteinshapiro, I. Urdaneta, M. Calatayud, O. Atabek, V. Mujica, and A. Keller, “Fano-Liouville Spectral Signatures in Open Quantum Systems,” Phys. Rev. Lett. 115(11), 113006 (2015).
[Crossref]

Campione, S.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, and T. S. Luk, “Broken symmetry dielectric resonators for high quality-factor fano metasurfaces,” ACS Photonics 3(12), 2362–2367 (2016).
[Crossref]

Chen, S.

Y. Zhang, W. Liu, Z. Li, Z. Li, H. Cheng, and S. Chen, “High-quality-factor multiple fano resonances for refractive index sensing,” Opt. Lett. 43(8), 1842 (2018).
[Crossref]

X. B. W. Liu, X. Yao, L. Zhang, H. X. Lin, S. Chen, J. H. Zhong, and B. Ren, “Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances,” ACS Photonics 2(12), 1725–1731 (2015).
[Crossref]

Chen, Z.

J. Qi, Y. Xiang, W. Yan, M. Li, and Z. Chen, “The excitation of the tunable longitudinal higher-order multipole SPR modes by strong coupling in large-area metal sub-10nm-gap array structures and its application,” J. Phys. Chem. C 120(43), 24932–24940 (2016).
[Crossref]

Chen, Z. H.

D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, Z. H. Chen, and S. D. Liu, “Fano Resonances Generated in a Single Dielectric Homogeneous Nanoparticle with High Structural Symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Cheng, H.

Chipouline, A.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, and A. I. Kuznetsov, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref]

Crozier, K. B.

S. Q. Li and K. B. Crozier, “Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole,” Phys. Rev. B 97(24), 245423 (2018).
[Crossref]

Cui, C.

C. Cui, C. Zhou, S. Yuan, X. Qiu, L. Zhu, Y. Wang, and J. Xia, “Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission,” ACS Photonics 5(10), 4074–4080 (2018).
[Crossref]

Deng, J.

S. D. Liu, J. Deng, and J. H. Teng, “Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref]

Destouches, N.

S. Bakhti, N. Bonod, S. D. Dhuey, P. J. Schuck, and N. Destouches, “Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles,” Sci. Rep. 6(1), 32061 (2016).
[Crossref]

Dhuey, S. D.

S. Bakhti, N. Bonod, S. D. Dhuey, P. J. Schuck, and N. Destouches, “Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles,” Sci. Rep. 6(1), 32061 (2016).
[Crossref]

Dmitriev, V.

A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, and V. R. Tuz, “Metasurface engineering through bound states in the continuum,” Phys. Rev. Appl. 12(1), 014024 (2019).
[Crossref]

Evlyukhin, A. B.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, and A. I. Kuznetsov, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref]

Favraud, G.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8(5), 725–745 (2019).
[Crossref]

Fedotov, I. V.

N. Papasimakis, I. V. Fedotov, T. Kaelberer, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Finkelsteinshapiro, D.

D. Finkelsteinshapiro, I. Urdaneta, M. Calatayud, O. Atabek, V. Mujica, and A. Keller, “Fano-Liouville Spectral Signatures in Open Quantum Systems,” Phys. Rev. Lett. 115(11), 113006 (2015).
[Crossref]

Fratalocchi, A.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8(5), 725–745 (2019).
[Crossref]

Frizyuk, K.

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum”, arXiv:1903.00309 (2019)

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1–2), 3–15 (1999).
[Crossref]

Giessen, H.

B. Luk’Yanchuk, P. Nordlander, and H. Giessen, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Gladyshev, S. A.

A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, and Z. F. Sadrieva, “Bound states in the continuum and fano resonances in the strong mode coupling regime,” Adv. Photonics 1(01), 1 (2019).
[Crossref]

Gu, C.

Z. Liu, W. Li, J. Li, and C. Gu, “Fano resonance rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

Guo, S.

N. Talebi, S. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
[Crossref]

Gupta, M.

M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

Hane, K.

Y. Moritake, Y. Kanamori, and K. Hane, “Enhanced quality factor of fano resonance in optical metamaterials by manipulating configuration of unit cells,” Appl. Phys. Lett. 107(21), 211108 (2015).
[Crossref]

Hara, M.

Hayashi, T.

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1–2), 3–15 (1999).
[Crossref]

Hong, Z.

C. S. Sui, X. J. Li, T. T. Lang, X. F. Jing, and Z. Hong, “High Q-Factor Resonance in a Symmetric Array of All-Dielectric Bars,” Appl. Sci. 8(2), 161 (2018).
[Crossref]

Huang, Y. H.

D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, Z. H. Chen, and S. D. Liu, “Fano Resonances Generated in a Single Dielectric Homogeneous Nanoparticle with High Structural Symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Ji, W. B.

D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, Z. H. Chen, and S. D. Liu, “Fano Resonances Generated in a Single Dielectric Homogeneous Nanoparticle with High Structural Symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Jiang, H.

W. Zhao, H. Jiang, B. Liu, Y. Jiang, C. Tang, and J. Li, “Fano resonance based optical modulator reaching 85% modulation depth,” Appl. Phys. Lett. 107(17), 171109 (2015).
[Crossref]

Jiang, Y.

W. Zhao, H. Jiang, B. Liu, Y. Jiang, C. Tang, and J. Li, “Fano resonance based optical modulator reaching 85% modulation depth,” Appl. Phys. Lett. 107(17), 171109 (2015).
[Crossref]

Jin, X.

Y. Liu, Y. Luo, X. Jin, X. Zhou, K. Song, and X. Zhao, “High-Q Fano Resonances in Asymmetric and Symmetric All-Dielectric Metasurfaces,” Plasmonics 12(5), 1431–1438 (2017).
[Crossref]

Jing, X. F.

C. S. Sui, X. J. Li, T. T. Lang, X. F. Jing, and Z. Hong, “High Q-Factor Resonance in a Symmetric Array of All-Dielectric Bars,” Appl. Sci. 8(2), 161 (2018).
[Crossref]

Kaelberer, T.

N. Papasimakis, I. V. Fedotov, T. Kaelberer, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

Kanamori, Y.

Y. Moritake, Y. Kanamori, and K. Hane, “Enhanced quality factor of fano resonance in optical metamaterials by manipulating configuration of unit cells,” Appl. Phys. Lett. 107(21), 211108 (2015).
[Crossref]

Kapitanova, P. V.

A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, and Z. F. Sadrieva, “Bound states in the continuum and fano resonances in the strong mode coupling regime,” Adv. Photonics 1(01), 1 (2019).
[Crossref]

Keller, A.

D. Finkelsteinshapiro, I. Urdaneta, M. Calatayud, O. Atabek, V. Mujica, and A. Keller, “Fano-Liouville Spectral Signatures in Open Quantum Systems,” Phys. Rev. Lett. 115(11), 113006 (2015).
[Crossref]

Khardikov, V. V.

V. R. Tuz, V. V. Khardikov, and Y. S. Kivshar, “All-dielectric resonant metasurfaces with a strong toroidal response,” ACS Photonics 5(5), 1871–1876 (2018).
[Crossref]

Kivshar, Y.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8(5), 725–745 (2019).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum”, arXiv:1903.00309 (2019)

Kivshar, Y. S.

A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, and V. R. Tuz, “Metasurface engineering through bound states in the continuum,” Phys. Rev. Appl. 12(1), 014024 (2019).
[Crossref]

V. R. Tuz, V. V. Khardikov, and Y. S. Kivshar, “All-dielectric resonant metasurfaces with a strong toroidal response,” ACS Photonics 5(5), 1871–1876 (2018).
[Crossref]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Koshelev, K.

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8(5), 725–745 (2019).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Koshelev, K. L.

A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, and Z. F. Sadrieva, “Bound states in the continuum and fano resonances in the strong mode coupling regime,” Adv. Photonics 1(01), 1 (2019).
[Crossref]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Kupriianov, A. S.

A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, and V. R. Tuz, “Metasurface engineering through bound states in the continuum,” Phys. Rev. Appl. 12(1), 014024 (2019).
[Crossref]

Kuznetsov, A. I.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, and A. I. Kuznetsov, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref]

Lang, T. T.

C. S. Sui, X. J. Li, T. T. Lang, X. F. Jing, and Z. Hong, “High Q-Factor Resonance in a Symmetric Array of All-Dielectric Bars,” Appl. Sci. 8(2), 161 (2018).
[Crossref]

Langston, W. L.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, and T. S. Luk, “Broken symmetry dielectric resonators for high quality-factor fano metasurfaces,” ACS Photonics 3(12), 2362–2367 (2016).
[Crossref]

Lepeshov, S.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Li, J.

Z. Liu, W. Li, J. Li, and C. Gu, “Fano resonance rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

W. Zhao, H. Jiang, B. Liu, Y. Jiang, C. Tang, and J. Li, “Fano resonance based optical modulator reaching 85% modulation depth,” Appl. Phys. Lett. 107(17), 171109 (2015).
[Crossref]

Li, M.

J. Qi, Y. Xiang, W. Yan, M. Li, and Z. Chen, “The excitation of the tunable longitudinal higher-order multipole SPR modes by strong coupling in large-area metal sub-10nm-gap array structures and its application,” J. Phys. Chem. C 120(43), 24932–24940 (2016).
[Crossref]

Li, S. Q.

S. Q. Li and K. B. Crozier, “Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole,” Phys. Rev. B 97(24), 245423 (2018).
[Crossref]

Li, W.

Z. Liu, W. Li, J. Li, and C. Gu, “Fano resonance rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

Li, X. J.

C. S. Sui, X. J. Li, T. T. Lang, X. F. Jing, and Z. Hong, “High Q-Factor Resonance in a Symmetric Array of All-Dielectric Bars,” Appl. Sci. 8(2), 161 (2018).
[Crossref]

Li, Z.

Limonov, M. F.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref]

Lin, H. X.

X. B. W. Liu, X. Yao, L. Zhang, H. X. Lin, S. Chen, J. H. Zhong, and B. Ren, “Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances,” ACS Photonics 2(12), 1725–1731 (2015).
[Crossref]

Liu, B.

W. Zhao, H. Jiang, B. Liu, Y. Jiang, C. Tang, and J. Li, “Fano resonance based optical modulator reaching 85% modulation depth,” Appl. Phys. Lett. 107(17), 171109 (2015).
[Crossref]

Liu, M.

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

Liu, S.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, and T. S. Luk, “Broken symmetry dielectric resonators for high quality-factor fano metasurfaces,” ACS Photonics 3(12), 2362–2367 (2016).
[Crossref]

Liu, S. D.

S. D. Liu, J. Deng, and J. H. Teng, “Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref]

D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, Z. H. Chen, and S. D. Liu, “Fano Resonances Generated in a Single Dielectric Homogeneous Nanoparticle with High Structural Symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Liu, W.

Liu, X. B. W.

X. B. W. Liu, X. Yao, L. Zhang, H. X. Lin, S. Chen, J. H. Zhong, and B. Ren, “Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances,” ACS Photonics 2(12), 1725–1731 (2015).
[Crossref]

Liu, Y.

Y. Liu, Y. Luo, X. Jin, X. Zhou, K. Song, and X. Zhao, “High-Q Fano Resonances in Asymmetric and Symmetric All-Dielectric Metasurfaces,” Plasmonics 12(5), 1431–1438 (2017).
[Crossref]

Liu, Z.

Z. Liu, W. Li, J. Li, and C. Gu, “Fano resonance rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

Luk, T. S.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, and T. S. Luk, “Broken symmetry dielectric resonators for high quality-factor fano metasurfaces,” ACS Photonics 3(12), 2362–2367 (2016).
[Crossref]

Luk’Yanchuk, B.

B. Luk’Yanchuk, P. Nordlander, and H. Giessen, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Luo, Y.

Y. Liu, Y. Luo, X. Jin, X. Zhou, K. Song, and X. Zhao, “High-Q Fano Resonances in Asymmetric and Symmetric All-Dielectric Metasurfaces,” Plasmonics 12(5), 1431–1438 (2017).
[Crossref]

Maier, S. A.

T. Shibanuma, S. A. Maier, and P. Albella, “Polarization control of high transmission/reflection switching by all-dielectric metasurfaces,” Appl. Phys. Lett. 112(6), 063103 (2018).
[Crossref]

Manjappa, M.

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

Martin, O. J.

Mascher, P.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, and P. Albella, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Matekovits, L.

A. K. Ospanova, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
[Crossref]

Matsui, T.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, and P. Albella, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, and A. I. Kuznetsov, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Moritake, Y.

Y. Moritake, Y. Kanamori, and K. Hane, “Enhanced quality factor of fano resonance in optical metamaterials by manipulating configuration of unit cells,” Appl. Phys. Lett. 107(21), 211108 (2015).
[Crossref]

Mujica, V.

D. Finkelsteinshapiro, I. Urdaneta, M. Calatayud, O. Atabek, V. Mujica, and A. Keller, “Fano-Liouville Spectral Signatures in Open Quantum Systems,” Phys. Rev. Lett. 115(11), 113006 (2015).
[Crossref]

Nemkov, N. A.

N. A. Nemkov and A. A. Basharin, “Nontrivial nonradiating alldielectric anapole,” Sci. Rep. 7(1), 1064 (2017).
[Crossref]

Nordlander, P.

B. Luk’Yanchuk, P. Nordlander, and H. Giessen, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

Ospanova, A. K.

A. K. Ospanova, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
[Crossref]

Pala, N.

A. Ahmadivand and N. Pala, “Multiple coil-type fano resonances in all-dielectric antisymmetric quadrumers,” Opt. Quantum Electron. 47(7), 2055–2064 (2015).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985). Vol. I.

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

N. Papasimakis, I. V. Fedotov, T. Kaelberer, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Petrov, M.

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum”, arXiv:1903.00309 (2019)

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Qi, J.

J. Qi, Y. Xiang, W. Yan, M. Li, and Z. Chen, “The excitation of the tunable longitudinal higher-order multipole SPR modes by strong coupling in large-area metal sub-10nm-gap array structures and its application,” J. Phys. Chem. C 120(43), 24932–24940 (2016).
[Crossref]

Qiu, X.

C. Cui, C. Zhou, S. Yuan, X. Qiu, L. Zhu, Y. Wang, and J. Xia, “Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission,” ACS Photonics 5(10), 4074–4080 (2018).
[Crossref]

Raybould, T. A.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

Ren, B.

X. B. W. Liu, X. Yao, L. Zhang, H. X. Lin, S. Chen, J. H. Zhong, and B. Ren, “Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances,” ACS Photonics 2(12), 1725–1731 (2015).
[Crossref]

Roschuk, T.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, and P. Albella, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Rybin, M. V.

A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, and Z. F. Sadrieva, “Bound states in the continuum and fano resonances in the strong mode coupling regime,” Adv. Photonics 1(01), 1 (2019).
[Crossref]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref]

Sadrieva, Z.

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum”, arXiv:1903.00309 (2019)

Sadrieva, Z. F.

A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, and Z. F. Sadrieva, “Bound states in the continuum and fano resonances in the strong mode coupling regime,” Adv. Photonics 1(01), 1 (2019).
[Crossref]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref]

Samusev, K. B.

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref]

Savinov, V.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

Sayanskiy, A.

A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, and V. R. Tuz, “Metasurface engineering through bound states in the continuum,” Phys. Rev. Appl. 12(1), 014024 (2019).
[Crossref]

Schuck, P. J.

S. Bakhti, N. Bonod, S. D. Dhuey, P. J. Schuck, and N. Destouches, “Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles,” Sci. Rep. 6(1), 32061 (2016).
[Crossref]

Shibanuma, T.

T. Shibanuma, S. A. Maier, and P. Albella, “Polarization control of high transmission/reflection switching by all-dielectric metasurfaces,” Appl. Phys. Lett. 112(6), 063103 (2018).
[Crossref]

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, and P. Albella, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Singh, R.

M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

Siraji, A. A.

Song, K.

Y. Liu, Y. Luo, X. Jin, X. Zhou, K. Song, and X. Zhao, “High-Q Fano Resonances in Asymmetric and Symmetric All-Dielectric Metasurfaces,” Plasmonics 12(5), 1431–1438 (2017).
[Crossref]

Srivastava, Y. K.

M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

Stenishchev, I. V.

I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
[Crossref]

Sui, C. S.

C. S. Sui, X. J. Li, T. T. Lang, X. F. Jing, and Z. Hong, “High Q-Factor Resonance in a Symmetric Array of All-Dielectric Bars,” Appl. Sci. 8(2), 161 (2018).
[Crossref]

Sun, G.

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating metaatom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

Talebi, N.

N. Talebi, S. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
[Crossref]

Tang, C.

W. Zhao, H. Jiang, B. Liu, Y. Jiang, C. Tang, and J. Li, “Fano resonance based optical modulator reaching 85% modulation depth,” Appl. Phys. Lett. 107(17), 171109 (2015).
[Crossref]

Teng, J. H.

S. D. Liu, J. Deng, and J. H. Teng, “Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref]

Tsai, D. P.

N. Papasimakis, I. V. Fedotov, T. Kaelberer, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

Tsuchimoto, Y.

Tuz, V. R.

A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, and V. R. Tuz, “Metasurface engineering through bound states in the continuum,” Phys. Rev. Appl. 12(1), 014024 (2019).
[Crossref]

V. R. Tuz, V. V. Khardikov, and Y. S. Kivshar, “All-dielectric resonant metasurfaces with a strong toroidal response,” ACS Photonics 5(5), 1871–1876 (2018).
[Crossref]

Urdaneta, I.

D. Finkelsteinshapiro, I. Urdaneta, M. Calatayud, O. Atabek, V. Mujica, and A. Keller, “Fano-Liouville Spectral Signatures in Open Quantum Systems,” Phys. Rev. Lett. 115(11), 113006 (2015).
[Crossref]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

van Aken, P. A.

N. Talebi, S. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
[Crossref]

Wang, W. J.

D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, Z. H. Chen, and S. D. Liu, “Fano Resonances Generated in a Single Dielectric Homogeneous Nanoparticle with High Structural Symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

Wang, Y.

C. Cui, C. Zhou, S. Yuan, X. Qiu, L. Zhu, Y. Wang, and J. Xia, “Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission,” ACS Photonics 5(10), 4074–4080 (2018).
[Crossref]

Warne, L. K.

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, and T. S. Luk, “Broken symmetry dielectric resonators for high quality-factor fano metasurfaces,” ACS Photonics 3(12), 2362–2367 (2016).
[Crossref]

Wojcik, J.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, and P. Albella, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Xia, J.

C. Cui, C. Zhou, S. Yuan, X. Qiu, L. Zhu, Y. Wang, and J. Xia, “Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission,” ACS Photonics 5(10), 4074–4080 (2018).
[Crossref]

Xiang, Y.

J. Qi, Y. Xiang, W. Yan, M. Li, and Z. Chen, “The excitation of the tunable longitudinal higher-order multipole SPR modes by strong coupling in large-area metal sub-10nm-gap array structures and its application,” J. Phys. Chem. C 120(43), 24932–24940 (2016).
[Crossref]

Xu, Y.

A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, and V. R. Tuz, “Metasurface engineering through bound states in the continuum,” Phys. Rev. Appl. 12(1), 014024 (2019).
[Crossref]

Yan, W.

J. Qi, Y. Xiang, W. Yan, M. Li, and Z. Chen, “The excitation of the tunable longitudinal higher-order multipole SPR modes by strong coupling in large-area metal sub-10nm-gap array structures and its application,” J. Phys. Chem. C 120(43), 24932–24940 (2016).
[Crossref]

Yang, Y.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-Assisted Strong Field Enhancement in Individual All-Dielectric Nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Yano, T. A.

Yao, X.

X. B. W. Liu, X. Yao, L. Zhang, H. X. Lin, S. Chen, J. H. Zhong, and B. Ren, “Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances,” ACS Photonics 2(12), 1725–1731 (2015).
[Crossref]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1–2), 3–15 (1999).
[Crossref]

Yu, Y. F.

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, and A. I. Kuznetsov, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref]

Yuan, L.

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating metaatom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

Yuan, S.

C. Cui, C. Zhou, S. Yuan, X. Qiu, L. Zhu, Y. Wang, and J. Xia, “Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission,” ACS Photonics 5(10), 4074–4080 (2018).
[Crossref]

Zenin, V. A.

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-Assisted Strong Field Enhancement in Individual All-Dielectric Nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

Zhang, L.

X. B. W. Liu, X. Yao, L. Zhang, H. X. Lin, S. Chen, J. H. Zhong, and B. Ren, “Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances,” ACS Photonics 2(12), 1725–1731 (2015).
[Crossref]

Zhang, X.

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating metaatom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

Zhang, Y.

Y. Zhang, W. Liu, Z. Li, Z. Li, H. Cheng, and S. Chen, “High-quality-factor multiple fano resonances for refractive index sensing,” Opt. Lett. 43(8), 1842 (2018).
[Crossref]

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating metaatom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

Zhao, W.

W. Zhao, H. Jiang, B. Liu, Y. Jiang, C. Tang, and J. Li, “Fano resonance based optical modulator reaching 85% modulation depth,” Appl. Phys. Lett. 107(17), 171109 (2015).
[Crossref]

Zhao, X.

Y. Liu, Y. Luo, X. Jin, X. Zhou, K. Song, and X. Zhao, “High-Q Fano Resonances in Asymmetric and Symmetric All-Dielectric Metasurfaces,” Plasmonics 12(5), 1431–1438 (2017).
[Crossref]

Zhao, Y.

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

N. Papasimakis, I. V. Fedotov, T. Kaelberer, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Zhong, J. H.

X. B. W. Liu, X. Yao, L. Zhang, H. X. Lin, S. Chen, J. H. Zhong, and B. Ren, “Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances,” ACS Photonics 2(12), 1725–1731 (2015).
[Crossref]

Zhou, C.

C. Cui, C. Zhou, S. Yuan, X. Qiu, L. Zhu, Y. Wang, and J. Xia, “Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission,” ACS Photonics 5(10), 4074–4080 (2018).
[Crossref]

Zhou, X.

Y. Liu, Y. Luo, X. Jin, X. Zhou, K. Song, and X. Zhao, “High-Q Fano Resonances in Asymmetric and Symmetric All-Dielectric Metasurfaces,” Plasmonics 12(5), 1431–1438 (2017).
[Crossref]

Zhu, L.

C. Cui, C. Zhou, S. Yuan, X. Qiu, L. Zhu, Y. Wang, and J. Xia, “Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission,” ACS Photonics 5(10), 4074–4080 (2018).
[Crossref]

Zhu, Y.

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating metaatom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

ACS Nano (1)

S. D. Liu, J. Deng, and J. H. Teng, “Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation,” ACS Nano 10(1), 1442–1453 (2016).
[Crossref]

ACS Photonics (6)

C. Cui, C. Zhou, S. Yuan, X. Qiu, L. Zhu, Y. Wang, and J. Xia, “Multiple Fano Resonances in Symmetry-Breaking Silicon Metasurface for Manipulating Light Emission,” ACS Photonics 5(10), 4074–4080 (2018).
[Crossref]

S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, and T. S. Luk, “Broken symmetry dielectric resonators for high quality-factor fano metasurfaces,” ACS Photonics 3(12), 2362–2367 (2016).
[Crossref]

Y. Yang, V. A. Zenin, and S. I. Bozhevolnyi, “Anapole-Assisted Strong Field Enhancement in Individual All-Dielectric Nanostructures,” ACS Photonics 5(5), 1960–1966 (2018).
[Crossref]

X. B. W. Liu, X. Yao, L. Zhang, H. X. Lin, S. Chen, J. H. Zhong, and B. Ren, “Efficient Platform for Flexible Engineering of Superradiant, Fano-Type, and Subradiant Resonances,” ACS Photonics 2(12), 1725–1731 (2015).
[Crossref]

V. R. Tuz, V. V. Khardikov, and Y. S. Kivshar, “All-dielectric resonant metasurfaces with a strong toroidal response,” ACS Photonics 5(5), 1871–1876 (2018).
[Crossref]

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, and P. Albella, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Adv. Mater. (1)

M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
[Crossref]

Adv. Photonics (1)

A. A. Bogdanov, K. L. Koshelev, P. V. Kapitanova, M. V. Rybin, S. A. Gladyshev, and Z. F. Sadrieva, “Bound states in the continuum and fano resonances in the strong mode coupling regime,” Adv. Photonics 1(01), 1 (2019).
[Crossref]

Appl. Phys. Lett. (4)

W. Zhao, H. Jiang, B. Liu, Y. Jiang, C. Tang, and J. Li, “Fano resonance based optical modulator reaching 85% modulation depth,” Appl. Phys. Lett. 107(17), 171109 (2015).
[Crossref]

M. Gupta, Y. K. Srivastava, M. Manjappa, and R. Singh, “Sensing with toroidal metamaterial,” Appl. Phys. Lett. 110(12), 121108 (2017).
[Crossref]

Y. Moritake, Y. Kanamori, and K. Hane, “Enhanced quality factor of fano resonance in optical metamaterials by manipulating configuration of unit cells,” Appl. Phys. Lett. 107(21), 211108 (2015).
[Crossref]

T. Shibanuma, S. A. Maier, and P. Albella, “Polarization control of high transmission/reflection switching by all-dielectric metasurfaces,” Appl. Phys. Lett. 112(6), 063103 (2018).
[Crossref]

Appl. Sci. (1)

C. S. Sui, X. J. Li, T. T. Lang, X. F. Jing, and Z. Hong, “High Q-Factor Resonance in a Symmetric Array of All-Dielectric Bars,” Appl. Sci. 8(2), 161 (2018).
[Crossref]

J. Phys. Chem. C (2)

D. J. Cai, Y. H. Huang, W. J. Wang, W. B. Ji, Z. H. Chen, and S. D. Liu, “Fano Resonances Generated in a Single Dielectric Homogeneous Nanoparticle with High Structural Symmetry,” J. Phys. Chem. C 119(8), 4252–4260 (2015).
[Crossref]

J. Qi, Y. Xiang, W. Yan, M. Li, and Z. Chen, “The excitation of the tunable longitudinal higher-order multipole SPR modes by strong coupling in large-area metal sub-10nm-gap array structures and its application,” J. Phys. Chem. C 120(43), 24932–24940 (2016).
[Crossref]

Nanophotonics (2)

N. Talebi, S. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
[Crossref]

K. Koshelev, G. Favraud, A. Bogdanov, Y. Kivshar, and A. Fratalocchi, “Nonradiating photonics with resonant dielectric nanostructures,” Nanophotonics 8(5), 725–745 (2019).
[Crossref]

Nat. Commun. (2)

A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M. Bakker, A. Chipouline, and A. I. Kuznetsov, “Nonradiating anapole modes in dielectric nanoparticles,” Nat. Commun. 6(1), 8069 (2015).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref]

Nat. Mater. (2)

B. Luk’Yanchuk, P. Nordlander, and H. Giessen, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]

N. Papasimakis, V. A. Fedotov, V. Savinov, T. A. Raybould, and N. I. Zheludev, “Electromagnetic toroidal excitations in matter and free space,” Nat. Mater. 15(3), 263–271 (2016).
[Crossref]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Nat. Photonics (1)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

A. Ahmadivand and N. Pala, “Multiple coil-type fano resonances in all-dielectric antisymmetric quadrumers,” Opt. Quantum Electron. 47(7), 2055–2064 (2015).
[Crossref]

Phys. Rev. Appl. (1)

A. S. Kupriianov, Y. Xu, A. Sayanskiy, V. Dmitriev, Y. S. Kivshar, and V. R. Tuz, “Metasurface engineering through bound states in the continuum,” Phys. Rev. Appl. 12(1), 014024 (2019).
[Crossref]

Phys. Rev. B (1)

S. Q. Li and K. B. Crozier, “Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole,” Phys. Rev. B 97(24), 245423 (2018).
[Crossref]

Phys. Rev. Lett. (3)

D. Finkelsteinshapiro, I. Urdaneta, M. Calatayud, O. Atabek, V. Mujica, and A. Keller, “Fano-Liouville Spectral Signatures in Open Quantum Systems,” Phys. Rev. Lett. 115(11), 113006 (2015).
[Crossref]

K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, “Asymmetric Metasurfaces with High- Q Resonances Governed by Bound States in the Continuum,” Phys. Rev. Lett. 121(19), 193903 (2018).
[Crossref]

M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, “High-Q Supercavity Modes in Subwavelength Dielectric Resonators,” Phys. Rev. Lett. 119(24), 243901 (2017).
[Crossref]

Plasmonics (1)

Y. Liu, Y. Luo, X. Jin, X. Zhou, K. Song, and X. Zhao, “High-Q Fano Resonances in Asymmetric and Symmetric All-Dielectric Metasurfaces,” Plasmonics 12(5), 1431–1438 (2017).
[Crossref]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Sci. Rep. (6)

S. Bakhti, N. Bonod, S. D. Dhuey, P. J. Schuck, and N. Destouches, “Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles,” Sci. Rep. 6(1), 32061 (2016).
[Crossref]

Z. Liu, W. Li, J. Li, and C. Gu, “Fano resonance rabi splitting of surface plasmons,” Sci. Rep. 7(1), 8010 (2017).
[Crossref]

G. Sun, L. Yuan, Y. Zhang, X. Zhang, and Y. Zhu, “Q-factor enhancement of Fano resonance in all-dielectric metasurfaces by modulating metaatom interactions,” Sci. Rep. 7(1), 8128 (2017).
[Crossref]

I. V. Stenishchev and A. A. Basharin, “Toroidal response in all-dielectric metamaterials based on water,” Sci. Rep. 7(1), 9468 (2017).
[Crossref]

A. K. Ospanova, L. Matekovits, and A. A. Basharin, “Multipolar passive cloaking by nonradiating anapole excitation,” Sci. Rep. 8(1), 12514 (2018).
[Crossref]

N. A. Nemkov and A. A. Basharin, “Nontrivial nonradiating alldielectric anapole,” Sci. Rep. 7(1), 1064 (2017).
[Crossref]

Science (1)

N. Papasimakis, I. V. Fedotov, T. Kaelberer, D. P. Tsai, and N. I. Zheludev, “Toroidal Dipolar Response in a Metamaterial,” Science 330(6010), 1510–1512 (2010).
[Crossref]

Sens. Actuators, B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54(1–2), 3–15 (1999).
[Crossref]

Other (2)

Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum”, arXiv:1903.00309 (2019)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985). Vol. I.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematics of the unit cell for asymmetric paired silicon nanorods placed on the silica substrate. (b) Side view and geometric parameters of a unit cell.
Fig. 2.
Fig. 2. (a) Transmission spectrum of the symmetric array (δ = 0 nm). The inset represents the fitted spectrum near the resonances. (b) The radiating powers of various multipole moments. (c) Comparison results of transmission spectra between symmetric and asymmetric arrays. (d) Q factors for different δ.
Fig. 3.
Fig. 3. (a) Normalized magnetic field amplitudes |H/H0| in the middle xy plane of the unit cell at characteristic wavelengths. The white arrows at 1222.3 nm and 1293.5 nm (1312.4 nm, 1378.7 nm and 1406.9 nm) indicate the magnetic (electric) field directions. (b) The z-component of H-field intensity at 1222.3 nm, 1312.4 nm, 1378.7 nm and 1406.9 nm, the z-component of E-field intensity at 1293.5 nm. The black and white arrows show the magnetic field directions.
Fig. 4.
Fig. 4. Transmission spectra at different parameters. (a)Period p, (b) side a, (c) Gap g and (d) Asymmetric parameter δ. Other parameters are the same as that used in Fig. 2(c).
Fig. 5.
Fig. 5. Wavelength shifts as a function of the refractive index of the background. The geometry parameters of the array are the same as that used in Fig. 2(c).

Metrics