Abstract

Spectrally selective solar absorbers are widely employed in solar thermal energy systems. This work theoretically investigates thermal radiative properties of metamaterials consisting of 1-D and 2-D grating-Mie-metamaterials (tungsten nanoparticles embedded in alumina) on top of multilayered refractory materials (tungsten-silicon nitride-tungsten) as a promising selective solar absorber. The proposed metamaterial shows high absorptance from the ultraviolet to near-infrared lights, while exhibiting low emittance in the mid-infrared regime owing to Mie-resonances, surface plasmon polaritons, and metal-dielectric-metal resonance. The optical properties of designed metamaterial solar absorbers are angular independence of up to 75° and polarization insensitive. The total absorptance of 1-D and 2-D grating-Mie-metamaterials are 90.59% and 94.11%, respectively, while the total emittance are 2.89% and 3.2%, respectively. The photon-to-heat conversion efficiency is theoretically investigated under various operational temperatures and concentration factors. Thermal performance of grating-Mie-metamaterials is greatly enhanced within a one-day cycle, and the stagnation temperature under different concentration factors manifests the potential feasibility in mid and high-temperature solar thermal engineering.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Perfect selective metamaterial solar absorbers

Hao Wang and Liping Wang
Opt. Express 21(S6) A1078-A1093 (2013)

Improved broadband spectral selectivity of absorbers/emitters for solar thermophotovoltaics based on 2D photonic crystal heterostructures

Xiaoyan Niu, Dong Qi, Xian Wang, Yongzhi Cheng, Fu Chen, Bowen Li, and Rongzhou Gong
J. Opt. Soc. Am. A 35(11) 1832-1838 (2018)

Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators

Zhigang Li, Liliana Stan, David A. Czaplewski, Xiaodong Yang, and Jie Gao
Opt. Express 26(5) 5616-5631 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Lim, “How heat from the sun can keep us all cool,” Nat. News 542(7639), 23–24 (2017).
    [Crossref]
  2. D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
    [Crossref]
  3. D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
    [Crossref]
  4. H. M. Qiblawey and F. Banat, “Solar thermal desalination technologies,” Desalination 220(1-3), 633–644 (2008).
    [Crossref]
  5. D. Mills, “Advances in solar thermal electricity technology,” Sol. Energy 76(1-3), 19–31 (2004).
    [Crossref]
  6. N. Wang, L. Han, H. He, N.-H. Park, and K. Koumoto, “A novel high-performance photovoltaic–thermoelectric hybrid device,” Energy Environ. Sci. 4(9), 3676–3679 (2011).
    [Crossref]
  7. Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
    [Crossref]
  8. Y. Tian, A. Ghanekar, L. Qian, M. Ricci, X. Liu, G. Xiao, O. Gregory, and Y. Zheng, “Near-infrared optics of nanoparticles embedded silica thin films,” Opt. Express 27(4), A148–A157 (2019).
    [Crossref]
  9. Z. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007).
  10. H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
    [Crossref]
  11. R. Siegel, Thermal radiation heat transfer, vol. 1 (CRC press, 2001).
  12. R. Pettit, R. Sowell, and I. Hall, “Black chrome solar selective coatings optimized for high temperature applications,” Sol. Energy Mater. 7(2), 153–170 (1982).
    [Crossref]
  13. G. E. McDonald, “Spectral reflectance properties of black chrome for use as a solar selective coating,” Sol. Energy 17(2), 119–122 (1975).
    [Crossref]
  14. J. Sweet, R. Pettit, and M. Chamberlain, “Optical modeling and aging characteristics of thermally stable black chrome solar selective coatings,” Sol. Energy Mater. 10(3-4), 251–286 (1984).
    [Crossref]
  15. C. K. Ho, A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, and T. N. Lambert, “Characterization of pyromark 2500 paint for high-temperature solar receivers,” J. Sol. Energy Eng. 136(1), 014502 (2014).
    [Crossref]
  16. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers (adv. mater. 23/2012),” Adv. Mater. 24(23), OP181 (2012).
    [Crossref]
  17. A. Isenstadt and J. Xu, “Subwavelength metal optics and antireflection,” Electron. Mater. Lett. 9(2), 125–132 (2013).
    [Crossref]
  18. A. Ghanekar, M. Sun, Z. Zhang, and Y. Zheng, “Optimal design of wavelength selective thermal emitter for thermophotovoltaic applications,” J. Therm. Sci. Eng. Appl. 10(1), 011004 (2018).
    [Crossref]
  19. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
    [Crossref]
  20. B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
    [Crossref]
  21. S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband solar thermal absorber based on optical metamaterials for high-temperature applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
    [Crossref]
  22. R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of em waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89(18), 183901 (2002).
    [Crossref]
  23. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
    [Crossref]
  24. D. Y. Shchegolkov, A. Azad, J. O’Hara, and E. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
    [Crossref]
  25. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
    [Crossref]
  26. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref]
  27. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref]
  28. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  29. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref]
  30. A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
    [Crossref]
  31. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
    [Crossref]
  32. A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
    [Crossref]
  33. A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
    [Crossref]
  34. J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, and M. Yan, “Light absorber based on nano-spheres on a substrate reflector,” Opt. Express 21(6), 6697–6706 (2013).
    [Crossref]
  35. A. S. (ASTM), “Calculation of Solar Insolation at AM1.5,” https://www.nrel.gov/grid/solar-resource/spectra.html .
  36. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993).
    [Crossref]
  37. P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
    [Crossref]
  38. Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129(1), 79–90 (2007).
    [Crossref]
  39. E. Glytsis and T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31(22), 4459–4470 (1992).
    [Crossref]
  40. R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Appl. Opt. 33(34), 7875–7882 (1994).
    [Crossref]
  41. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
    [Crossref]
  42. U. Kreibig and M. Vollmer, Optical properties of metal clusters, vol. 25 (Springer Berlin, 1995).
  43. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39(14), 9852–9858 (1989).
    [Crossref]
  44. M. S. Wheeler, “A scattering-based approach to the design, analysis, and experimental verification of magnetic metamaterials made from dielectrics,” Ph.D. thesis (2010).
  45. A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
    [Crossref]
  46. W. C. Chew and W. C. Chew, Waves and fields in inhomogeneous media, vol. 522 (IEEE press New York, 1995).
  47. M. R. Querry, “Optical constants,” Tech. rep., MISSOURI UNIV-KANSAS CITY (1985).
  48. L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. publications 8, 13010 (2013).
    [Crossref]
  49. S. Ferré, A. Peinado, E. Garcia-Caurel, V. Trinité, M. Carras, and R. Ferreira, “Comparative study of sio 2, si 3 n 4 and tio 2 thin films as passivation layers for quantum cascade lasers,” Opt. Express 24(21), 24032–24044 (2016).
    [Crossref]
  50. A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
    [Crossref]
  51. A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
    [Crossref]
  52. M. Ono, K. Chen, W. Li, and S. Fan, “Self-adaptive radiative cooling based on phase change materials,” Opt. Express 26(18), A777–A787 (2018).
    [Crossref]
  53. P. Yang, C. Chen, and Z. M. Zhang, “A dual-layer structure with record-high solar reflectance for daytime radiative cooling,” Sol. Energy 169, 316–324 (2018).
    [Crossref]
  54. A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.
  55. P.-M. Robitaille, “Kirchhoff’s law of thermal emission: 150 years,” in Progress in Physics, Vol. 4 (Progress in Physics, 2009) pp. 3–13.
  56. Weatherground, “Weather conditions,” https://www.wunderground.com/history/daily/us/ma/boston/KBOS/date/2018-7-10 (2018). [Online; accessed 10-July-2018].
  57. PVEDUCATION.ORG, “Calculation of Solar Insolation,” https://www.pveducation.org/pvcdrom/properties-of-sunlight/calculation-of-solar-insolation (2018).
  58. T. Vink, W. Walrave, J. Daams, A. Dirks, M. Somers, and K. Van den Aker, “Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering,” J. Appl. Phys. 74(2), 988–995 (1993).
    [Crossref]
  59. F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8(10), 3040–3048 (2015).
    [Crossref]
  60. Y. Zhao, Y. Qian, W. Yu, and Z. Chen, “Surface roughness of alumina films deposited by reactive rf sputtering,” Thin Solid Films 286(1-2), 45–48 (1996).
    [Crossref]
  61. R. Cremer, M. Witthaut, D. Neuschütz, G. Erkens, T. Leyendecker, and M. Feldhege, “Comparative characterization of alumina coatings deposited by rf, dc and pulsed reactive magnetron sputtering,” Surf. Coat. Technol. 120-121, 213–218 (1999).
    [Crossref]
  62. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using pecvd: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
    [Crossref]
  63. H. Kato, K. Orito, H. Kikuchi, and S. Maku, “Method of cvd for forming silicon nitride film on substrate,” (2006). US Patent 7,094,708.
  64. H. Kanoh, O. Sugiura, P. Breddels, and M. Matsumura, “Amorphous-silicon/silicon-nitride thin-film transistors fabricated by plasma-free (chemical vapor deposition) method,” IEEE Electron Device Lett. 11(6), 258–260 (1990).
    [Crossref]
  65. M. Ino, N. Inoue, and M. Yoshimaru, “Silicon nitride thin-film deposition by lpcvd with in situ hf vapor cleaning and its application to stacked dram capacitor fabrication,” IEEE Trans. Electron Devices 41(5), 703–708 (1994).
    [Crossref]
  66. F. Cao, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, and Z. Ren, “A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in sio 2 deposited on lanthanum aluminate,” Sol. Energy Mater. Sol. Cells 160, 12–17 (2017).
    [Crossref]
  67. L. Wang and Z. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
    [Crossref]
  68. J. Wu, C. Zhou, H. Cao, and A. Hu, “Polarization-dependent and-independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
    [Crossref]
  69. L. Wang and Z. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
    [Crossref]

2019 (1)

2018 (4)

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

A. Ghanekar, M. Sun, Z. Zhang, and Y. Zheng, “Optimal design of wavelength selective thermal emitter for thermophotovoltaic applications,” J. Therm. Sci. Eng. Appl. 10(1), 011004 (2018).
[Crossref]

M. Ono, K. Chen, W. Li, and S. Fan, “Self-adaptive radiative cooling based on phase change materials,” Opt. Express 26(18), A777–A787 (2018).
[Crossref]

P. Yang, C. Chen, and Z. M. Zhang, “A dual-layer structure with record-high solar reflectance for daytime radiative cooling,” Sol. Energy 169, 316–324 (2018).
[Crossref]

2017 (3)

F. Cao, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, and Z. Ren, “A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in sio 2 deposited on lanthanum aluminate,” Sol. Energy Mater. Sol. Cells 160, 12–17 (2017).
[Crossref]

X. Lim, “How heat from the sun can keep us all cool,” Nat. News 542(7639), 23–24 (2017).
[Crossref]

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

2016 (5)

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
[Crossref]

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband solar thermal absorber based on optical metamaterials for high-temperature applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
[Crossref]

S. Ferré, A. Peinado, E. Garcia-Caurel, V. Trinité, M. Carras, and R. Ferreira, “Comparative study of sio 2, si 3 n 4 and tio 2 thin films as passivation layers for quantum cascade lasers,” Opt. Express 24(21), 24032–24044 (2016).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
[Crossref]

2015 (4)

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8(10), 3040–3048 (2015).
[Crossref]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
[Crossref]

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

2014 (2)

C. K. Ho, A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, and T. N. Lambert, “Characterization of pyromark 2500 paint for high-temperature solar receivers,” J. Sol. Energy Eng. 136(1), 014502 (2014).
[Crossref]

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

2013 (6)

J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, and M. Yan, “Light absorber based on nano-spheres on a substrate reflector,” Opt. Express 21(6), 6697–6706 (2013).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref]

A. Isenstadt and J. Xu, “Subwavelength metal optics and antireflection,” Electron. Mater. Lett. 9(2), 125–132 (2013).
[Crossref]

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. publications 8, 13010 (2013).
[Crossref]

J. Wu, C. Zhou, H. Cao, and A. Hu, “Polarization-dependent and-independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

L. Wang and Z. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[Crossref]

2012 (4)

L. Wang and Z. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers (adv. mater. 23/2012),” Adv. Mater. 24(23), OP181 (2012).
[Crossref]

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref]

2011 (3)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

N. Wang, L. Han, H. He, N.-H. Park, and K. Koumoto, “A novel high-performance photovoltaic–thermoelectric hybrid device,” Energy Environ. Sci. 4(9), 3676–3679 (2011).
[Crossref]

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

2010 (3)

D. Y. Shchegolkov, A. Azad, J. O’Hara, and E. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

2008 (4)

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

H. M. Qiblawey and F. Banat, “Solar thermal desalination technologies,” Desalination 220(1-3), 633–644 (2008).
[Crossref]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using pecvd: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
[Crossref]

2007 (3)

Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129(1), 79–90 (2007).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]

2004 (1)

D. Mills, “Advances in solar thermal electricity technology,” Sol. Energy 76(1-3), 19–31 (2004).
[Crossref]

2002 (1)

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of em waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89(18), 183901 (2002).
[Crossref]

1999 (1)

R. Cremer, M. Witthaut, D. Neuschütz, G. Erkens, T. Leyendecker, and M. Feldhege, “Comparative characterization of alumina coatings deposited by rf, dc and pulsed reactive magnetron sputtering,” Surf. Coat. Technol. 120-121, 213–218 (1999).
[Crossref]

1996 (2)

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

Y. Zhao, Y. Qian, W. Yu, and Z. Chen, “Surface roughness of alumina films deposited by reactive rf sputtering,” Thin Solid Films 286(1-2), 45–48 (1996).
[Crossref]

1994 (2)

R. Bräuer and O. Bryngdahl, “Design of antireflection gratings with approximate and rigorous methods,” Appl. Opt. 33(34), 7875–7882 (1994).
[Crossref]

M. Ino, N. Inoue, and M. Yoshimaru, “Silicon nitride thin-film deposition by lpcvd with in situ hf vapor cleaning and its application to stacked dram capacitor fabrication,” IEEE Trans. Electron Devices 41(5), 703–708 (1994).
[Crossref]

1993 (2)

T. Vink, W. Walrave, J. Daams, A. Dirks, M. Somers, and K. Van den Aker, “Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering,” J. Appl. Phys. 74(2), 988–995 (1993).
[Crossref]

D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993).
[Crossref]

1992 (1)

1990 (1)

H. Kanoh, O. Sugiura, P. Breddels, and M. Matsumura, “Amorphous-silicon/silicon-nitride thin-film transistors fabricated by plasma-free (chemical vapor deposition) method,” IEEE Electron Device Lett. 11(6), 258–260 (1990).
[Crossref]

1989 (1)

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39(14), 9852–9858 (1989).
[Crossref]

1984 (1)

J. Sweet, R. Pettit, and M. Chamberlain, “Optical modeling and aging characteristics of thermally stable black chrome solar selective coatings,” Sol. Energy Mater. 10(3-4), 251–286 (1984).
[Crossref]

1982 (1)

R. Pettit, R. Sowell, and I. Hall, “Black chrome solar selective coatings optimized for high temperature applications,” Sol. Energy Mater. 7(2), 153–170 (1982).
[Crossref]

1975 (1)

G. E. McDonald, “Spectral reflectance properties of black chrome for use as a solar selective coating,” Sol. Energy 17(2), 119–122 (1975).
[Crossref]

Acharya, P. K.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Adler-Golden, S. M.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Aimez, V.

Albrektsen, O.

Allred, C. L.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Ambrosini, A.

C. K. Ho, A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, and T. N. Lambert, “Characterization of pyromark 2500 paint for high-temperature solar receivers,” J. Sol. Energy Eng. 136(1), 014502 (2014).
[Crossref]

Anderson, G. P.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Averitt, R. D.

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]

Azad, A.

D. Y. Shchegolkov, A. Azad, J. O’Hara, and E. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Banat, F.

H. M. Qiblawey and F. Banat, “Solar thermal desalination technologies,” Desalination 220(1-3), 633–644 (2008).
[Crossref]

Bao, J.

F. Cao, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, and Z. Ren, “A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in sio 2 deposited on lanthanum aluminate,” Sol. Energy Mater. Sol. Cells 160, 12–17 (2017).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8(10), 3040–3048 (2015).
[Crossref]

Bencomo, M.

C. K. Ho, A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, and T. N. Lambert, “Characterization of pyromark 2500 paint for high-temperature solar receivers,” J. Sol. Energy Eng. 136(1), 014502 (2014).
[Crossref]

Berk, A.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Bernstein, L. S.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Bingham, C. M.

Bozhevolnyi, S. I.

Bräuer, R.

Breddels, P.

H. Kanoh, O. Sugiura, P. Breddels, and M. Matsumura, “Amorphous-silicon/silicon-nitride thin-film transistors fabricated by plasma-free (chemical vapor deposition) method,” IEEE Electron Device Lett. 11(6), 258–260 (1990).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Bryngdahl, O.

Cao, F.

F. Cao, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, and Z. Ren, “A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in sio 2 deposited on lanthanum aluminate,” Sol. Energy Mater. Sol. Cells 160, 12–17 (2017).
[Crossref]

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8(10), 3040–3048 (2015).
[Crossref]

Cao, H.

J. Wu, C. Zhou, H. Cao, and A. Hu, “Polarization-dependent and-independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

Carras, M.

Caylor, J. C.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Chamberlain, M.

J. Sweet, R. Pettit, and M. Chamberlain, “Optical modeling and aging characteristics of thermally stable black chrome solar selective coatings,” Sol. Energy Mater. 10(3-4), 251–286 (1984).
[Crossref]

Charette, P.

Chen, C.

P. Yang, C. Chen, and Z. M. Zhang, “A dual-layer structure with record-high solar reflectance for daytime radiative cooling,” Sol. Energy 169, 316–324 (2018).
[Crossref]

Chen, G.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8(10), 3040–3048 (2015).
[Crossref]

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Chen, K.

Chen, Y.

Chen, Y.-B.

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129(1), 79–90 (2007).
[Crossref]

Chen, Z.

Y. Zhao, Y. Qian, W. Yu, and Z. Chen, “Surface roughness of alumina films deposited by reactive rf sputtering,” Thin Solid Films 286(1-2), 45–48 (1996).
[Crossref]

Chetwynd, J. H.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Chew, W. C.

W. C. Chew and W. C. Chew, Waves and fields in inhomogeneous media, vol. 522 (IEEE press New York, 1995).

W. C. Chew and W. C. Chew, Waves and fields in inhomogeneous media, vol. 522 (IEEE press New York, 1995).

Chiesa, M.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Chilkoti, A.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref]

Chiu, F.-C.

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Ciraci, C.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref]

Cremer, R.

R. Cremer, M. Witthaut, D. Neuschütz, G. Erkens, T. Leyendecker, and M. Feldhege, “Comparative characterization of alumina coatings deposited by rf, dc and pulsed reactive magnetron sputtering,” Surf. Coat. Technol. 120-121, 213–218 (1999).
[Crossref]

Cui, Y.

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

Daams, J.

T. Vink, W. Walrave, J. Daams, A. Dirks, M. Somers, and K. Van den Aker, “Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering,” J. Appl. Phys. 74(2), 988–995 (1993).
[Crossref]

Dai, J.

de Abajo, F. J. G.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Dirks, A.

T. Vink, W. Walrave, J. Daams, A. Dirks, M. Somers, and K. Van den Aker, “Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering,” J. Appl. Phys. 74(2), 988–995 (1993).
[Crossref]

Dothe, H.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Doyle, W. T.

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39(14), 9852–9858 (1989).
[Crossref]

Erkens, G.

R. Cremer, M. Witthaut, D. Neuschütz, G. Erkens, T. Leyendecker, and M. Feldhege, “Comparative characterization of alumina coatings deposited by rf, dc and pulsed reactive magnetron sputtering,” Surf. Coat. Technol. 120-121, 213–218 (1999).
[Crossref]

Fan, S.

Feldhege, M.

R. Cremer, M. Witthaut, D. Neuschütz, G. Erkens, T. Leyendecker, and M. Feldhege, “Comparative characterization of alumina coatings deposited by rf, dc and pulsed reactive magnetron sputtering,” Surf. Coat. Technol. 120-121, 213–218 (1999).
[Crossref]

Feng, H.-P.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Ferré, S.

Ferreira, R.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Gao, L.

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. publications 8, 13010 (2013).
[Crossref]

Garcia-Caurel, E.

Gaylord, T. K.

Ghanekar, A.

Y. Tian, A. Ghanekar, L. Qian, M. Ricci, X. Liu, G. Xiao, O. Gregory, and Y. Zheng, “Near-infrared optics of nanoparticles embedded silica thin films,” Opt. Express 27(4), A148–A157 (2019).
[Crossref]

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

A. Ghanekar, M. Sun, Z. Zhang, and Y. Zheng, “Optimal design of wavelength selective thermal emitter for thermophotovoltaic applications,” J. Therm. Sci. Eng. Appl. 10(1), 011004 (2018).
[Crossref]

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
[Crossref]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
[Crossref]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
[Crossref]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Glytsis, E.

Gorin, A.

Gregory, O.

Grondin, E.

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Hall, A.

C. K. Ho, A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, and T. N. Lambert, “Characterization of pyromark 2500 paint for high-temperature solar receivers,” J. Sol. Energy Eng. 136(1), 014502 (2014).
[Crossref]

Hall, I.

R. Pettit, R. Sowell, and I. Hall, “Black chrome solar selective coatings optimized for high temperature applications,” Sol. Energy Mater. 7(2), 153–170 (1982).
[Crossref]

Han, L.

N. Wang, L. Han, H. He, N.-H. Park, and K. Koumoto, “A novel high-performance photovoltaic–thermoelectric hybrid device,” Energy Environ. Sci. 4(9), 3676–3679 (2011).
[Crossref]

Han, S.

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband solar thermal absorber based on optical metamaterials for high-temperature applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

He, H.

N. Wang, L. Han, H. He, N.-H. Park, and K. Koumoto, “A novel high-performance photovoltaic–thermoelectric hybrid device,” Energy Environ. Sci. 4(9), 3676–3679 (2011).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Hill, R. T.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref]

Ho, C. K.

C. K. Ho, A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, and T. N. Lambert, “Characterization of pyromark 2500 paint for high-temperature solar receivers,” J. Sol. Energy Eng. 136(1), 014502 (2014).
[Crossref]

Hoke, M. L.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Hu, A.

J. Wu, C. Zhou, H. Cao, and A. Hu, “Polarization-dependent and-independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

Ino, M.

M. Ino, N. Inoue, and M. Yoshimaru, “Silicon nitride thin-film deposition by lpcvd with in situ hf vapor cleaning and its application to stacked dram capacitor fabrication,” IEEE Trans. Electron Devices 41(5), 703–708 (1994).
[Crossref]

Inoue, N.

M. Ino, N. Inoue, and M. Yoshimaru, “Silicon nitride thin-film deposition by lpcvd with in situ hf vapor cleaning and its application to stacked dram capacitor fabrication,” IEEE Trans. Electron Devices 41(5), 703–708 (1994).
[Crossref]

Isenstadt, A.

A. Isenstadt and J. Xu, “Subwavelength metal optics and antireflection,” Electron. Mater. Lett. 9(2), 125–132 (2013).
[Crossref]

Jaouad, A.

Jeong, L. S.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Jie, Q.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
[Crossref]

Jung, P.-H.

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband solar thermal absorber based on optical metamaterials for high-temperature applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Kanoh, H.

H. Kanoh, O. Sugiura, P. Breddels, and M. Matsumura, “Amorphous-silicon/silicon-nitride thin-film transistors fabricated by plasma-free (chemical vapor deposition) method,” IEEE Electron Device Lett. 11(6), 258–260 (1990).
[Crossref]

Kato, H.

H. Kato, K. Orito, H. Kikuchi, and S. Maku, “Method of cvd for forming silicon nitride film on substrate,” (2006). US Patent 7,094,708.

Kikuchi, H.

H. Kato, K. Orito, H. Kikuchi, and S. Maku, “Method of cvd for forming silicon nitride film on substrate,” (2006). US Patent 7,094,708.

Koumoto, K.

N. Wang, L. Han, H. He, N.-H. Park, and K. Koumoto, “A novel high-performance photovoltaic–thermoelectric hybrid device,” Energy Environ. Sci. 4(9), 3676–3679 (2011).
[Crossref]

Kraemer, D.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8(10), 3040–3048 (2015).
[Crossref]

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical properties of metal clusters, vol. 25 (Springer Berlin, 1995).

Lalanne, P.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

Lambert, T. N.

C. K. Ho, A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, and T. N. Lambert, “Characterization of pyromark 2500 paint for high-temperature solar receivers,” J. Sol. Energy Eng. 136(1), 014502 (2014).
[Crossref]

Landy, N. I.

Lee, B. J.

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband solar thermal absorber based on optical metamaterials for high-temperature applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Lee, H.

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband solar thermal absorber based on optical metamaterials for high-temperature applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

Lee, H. J.

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

Lemarchand, F.

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. publications 8, 13010 (2013).
[Crossref]

Lemercier-Lalanne, D.

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

Lequime, M.

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. publications 8, 13010 (2013).
[Crossref]

Leyendecker, T.

R. Cremer, M. Witthaut, D. Neuschütz, G. Erkens, T. Leyendecker, and M. Feldhege, “Comparative characterization of alumina coatings deposited by rf, dc and pulsed reactive magnetron sputtering,” Surf. Coat. Technol. 120-121, 213–218 (1999).
[Crossref]

Li, W.

Li, Y.

F. Cao, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, and Z. Ren, “A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in sio 2 deposited on lanthanum aluminate,” Sol. Energy Mater. Sol. Cells 160, 12–17 (2017).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8(10), 3040–3048 (2015).
[Crossref]

Lim, X.

X. Lim, “How heat from the sun can keep us all cool,” Nat. News 542(7639), 23–24 (2017).
[Crossref]

Lin, L.

Litvinchuk, A. P.

F. Cao, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, and Z. Ren, “A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in sio 2 deposited on lanthanum aluminate,” Sol. Energy Mater. Sol. Cells 160, 12–17 (2017).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8(10), 3040–3048 (2015).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Liu, W.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
[Crossref]

Liu, X.

Y. Tian, A. Ghanekar, L. Qian, M. Ricci, X. Liu, G. Xiao, O. Gregory, and Y. Zheng, “Near-infrared optics of nanoparticles embedded silica thin films,” Opt. Express 27(4), A148–A157 (2019).
[Crossref]

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers (adv. mater. 23/2012),” Adv. Mater. 24(23), OP181 (2012).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liz-Marzán, L. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Loomis, J.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
[Crossref]

Ma, Y.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Mahoney, A. R.

C. K. Ho, A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, and T. N. Lambert, “Characterization of pyromark 2500 paint for high-temperature solar receivers,” J. Sol. Energy Eng. 136(1), 014502 (2014).
[Crossref]

Maku, S.

H. Kato, K. Orito, H. Kikuchi, and S. Maku, “Method of cvd for forming silicon nitride film on substrate,” (2006). US Patent 7,094,708.

Marques, R.

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of em waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89(18), 183901 (2002).
[Crossref]

Martel, J.

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of em waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89(18), 183901 (2002).
[Crossref]

Matsumura, M.

H. Kanoh, O. Sugiura, P. Breddels, and M. Matsumura, “Amorphous-silicon/silicon-nitride thin-film transistors fabricated by plasma-free (chemical vapor deposition) method,” IEEE Electron Device Lett. 11(6), 258–260 (1990).
[Crossref]

Matthew, M. W.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

McDonald, G. E.

G. E. McDonald, “Spectral reflectance properties of black chrome for use as a solar selective coating,” Sol. Energy 17(2), 119–122 (1975).
[Crossref]

McEnaney, K.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
[Crossref]

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Medina, F.

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of em waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89(18), 183901 (2002).
[Crossref]

Mesa, F.

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of em waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89(18), 183901 (2002).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Mills, D.

D. Mills, “Advances in solar thermal electricity technology,” Sol. Energy 76(1-3), 19–31 (2004).
[Crossref]

Mitchell, A.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Mock, J. J.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref]

Moreau, A.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref]

Morris, G. M.

Muhammed, M.

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Muto, A.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Neuschütz, D.

R. Cremer, M. Witthaut, D. Neuschütz, G. Erkens, T. Leyendecker, and M. Feldhege, “Comparative characterization of alumina coatings deposited by rf, dc and pulsed reactive magnetron sputtering,” Surf. Coat. Technol. 120-121, 213–218 (1999).
[Crossref]

Nielsen, M. G.

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

O’Hara, J.

D. Y. Shchegolkov, A. Azad, J. O’Hara, and E. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Ono, M.

Orito, K.

H. Kato, K. Orito, H. Kikuchi, and S. Maku, “Method of cvd for forming silicon nitride film on substrate,” (2006). US Patent 7,094,708.

Ozbay, E.

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers (adv. mater. 23/2012),” Adv. Mater. 24(23), OP181 (2012).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

Park, N.-H.

N. Wang, L. Han, H. He, N.-H. Park, and K. Koumoto, “A novel high-performance photovoltaic–thermoelectric hybrid device,” Energy Environ. Sci. 4(9), 3676–3679 (2011).
[Crossref]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Peinado, A.

Pettit, R.

J. Sweet, R. Pettit, and M. Chamberlain, “Optical modeling and aging characteristics of thermally stable black chrome solar selective coatings,” Sol. Energy Mater. 10(3-4), 251–286 (1984).
[Crossref]

R. Pettit, R. Sowell, and I. Hall, “Black chrome solar selective coatings optimized for high temperature applications,” Sol. Energy Mater. 7(2), 153–170 (1982).
[Crossref]

Phelan, P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Pors, A.

Poudel, B.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Pukall, B.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Qian, L.

Qian, Y.

Y. Zhao, Y. Qian, W. Yu, and Z. Chen, “Surface roughness of alumina films deposited by reactive rf sputtering,” Thin Solid Films 286(1-2), 45–48 (1996).
[Crossref]

Qiblawey, H. M.

H. M. Qiblawey and F. Banat, “Solar thermal desalination technologies,” Desalination 220(1-3), 633–644 (2008).
[Crossref]

Qiu, M.

J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, and M. Yan, “Light absorber based on nano-spheres on a substrate reflector,” Opt. Express 21(6), 6697–6706 (2013).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Querry, M. R.

M. R. Querry, “Optical constants,” Tech. rep., MISSOURI UNIV-KANSAS CITY (1985).

Raguin, D. H.

Ren, Z.

F. Cao, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, and Z. Ren, “A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in sio 2 deposited on lanthanum aluminate,” Sol. Energy Mater. Sol. Cells 160, 12–17 (2017).
[Crossref]

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8(10), 3040–3048 (2015).
[Crossref]

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Ricci, M.

Richtsmeier, S. C.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

Robitaille, P.-M.

P.-M. Robitaille, “Kirchhoff’s law of thermal emission: 150 years,” in Progress in Physics, Vol. 4 (Progress in Physics, 2009) pp. 3–13.

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Rosengarten, G.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Shchegolkov, D. Y.

D. Y. Shchegolkov, A. Azad, J. O’Hara, and E. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Sheng, J.

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

Shin, J.-H.

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband solar thermal absorber based on optical metamaterials for high-temperature applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

Siegel, R.

R. Siegel, Thermal radiation heat transfer, vol. 1 (CRC press, 2001).

Simakov, E.

D. Y. Shchegolkov, A. Azad, J. O’Hara, and E. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

Sivan, V. P.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Smith, D. R.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref]

Somers, M.

T. Vink, W. Walrave, J. Daams, A. Dirks, M. Somers, and K. Van den Aker, “Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering,” J. Appl. Phys. 74(2), 988–995 (1993).
[Crossref]

Sowell, R.

R. Pettit, R. Sowell, and I. Hall, “Black chrome solar selective coatings optimized for high temperature applications,” Sol. Energy Mater. 7(2), 153–170 (1982).
[Crossref]

Su, J.

Sugiura, O.

H. Kanoh, O. Sugiura, P. Breddels, and M. Matsumura, “Amorphous-silicon/silicon-nitride thin-film transistors fabricated by plasma-free (chemical vapor deposition) method,” IEEE Electron Device Lett. 11(6), 258–260 (1990).
[Crossref]

Sun, H.

Sun, M.

A. Ghanekar, M. Sun, Z. Zhang, and Y. Zheng, “Optimal design of wavelength selective thermal emitter for thermophotovoltaic applications,” J. Therm. Sci. Eng. Appl. 10(1), 011004 (2018).
[Crossref]

Sweet, J.

J. Sweet, R. Pettit, and M. Chamberlain, “Optical modeling and aging characteristics of thermally stable black chrome solar selective coatings,” Sol. Energy Mater. 10(3-4), 251–286 (1984).
[Crossref]

Tang, L.

F. Cao, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, and Z. Ren, “A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in sio 2 deposited on lanthanum aluminate,” Sol. Energy Mater. Sol. Cells 160, 12–17 (2017).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8(10), 3040–3048 (2015).
[Crossref]

Tao, H.

Tian, Y.

Y. Tian, A. Ghanekar, L. Qian, M. Ricci, X. Liu, G. Xiao, O. Gregory, and Y. Zheng, “Near-infrared optics of nanoparticles embedded silica thin films,” Opt. Express 27(4), A148–A157 (2019).
[Crossref]

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

Timans, P.

Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129(1), 79–90 (2007).
[Crossref]

Trinité, V.

Van den Aker, K.

T. Vink, W. Walrave, J. Daams, A. Dirks, M. Somers, and K. Van den Aker, “Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering,” J. Appl. Phys. 74(2), 988–995 (1993).
[Crossref]

Vink, T.

T. Vink, W. Walrave, J. Daams, A. Dirks, M. Somers, and K. Van den Aker, “Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering,” J. Appl. Phys. 74(2), 988–995 (1993).
[Crossref]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical properties of metal clusters, vol. 25 (Springer Berlin, 1995).

Walrave, W.

T. Vink, W. Walrave, J. Daams, A. Dirks, M. Somers, and K. Van den Aker, “Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering,” J. Appl. Phys. 74(2), 988–995 (1993).
[Crossref]

Wang, D.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Wang, H.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, L.

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref]

L. Wang and Z. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[Crossref]

L. Wang and Z. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

Wang, N.

N. Wang, L. Han, H. He, N.-H. Park, and K. Koumoto, “A novel high-performance photovoltaic–thermoelectric hybrid device,” Energy Environ. Sci. 4(9), 3676–3679 (2011).
[Crossref]

Wang, Q.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref]

Wang, X.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers (adv. mater. 23/2012),” Adv. Mater. 24(23), OP181 (2012).
[Crossref]

Weinstein, L. A.

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Wheeler, M. S.

M. S. Wheeler, “A scattering-based approach to the design, analysis, and experimental verification of magnetic metamaterials made from dielectrics,” Ph.D. thesis (2010).

Wiley, B. J.

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref]

Witthaut, M.

R. Cremer, M. Witthaut, D. Neuschütz, G. Erkens, T. Leyendecker, and M. Feldhege, “Comparative characterization of alumina coatings deposited by rf, dc and pulsed reactive magnetron sputtering,” Surf. Coat. Technol. 120-121, 213–218 (1999).
[Crossref]

Wu, J.

J. Wu, C. Zhou, H. Cao, and A. Hu, “Polarization-dependent and-independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

Xiao, G.

Xu, J.

A. Isenstadt and J. Xu, “Subwavelength metal optics and antireflection,” Electron. Mater. Lett. 9(2), 125–132 (2013).
[Crossref]

Yan, M.

Yan, X.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Yang, P.

P. Yang, C. Chen, and Z. M. Zhang, “A dual-layer structure with record-high solar reflectance for daytime radiative cooling,” Sol. Energy 169, 316–324 (2018).
[Crossref]

Ye, F.

Yoshimaru, M.

M. Ino, N. Inoue, and M. Yoshimaru, “Silicon nitride thin-film deposition by lpcvd with in situ hf vapor cleaning and its application to stacked dram capacitor fabrication,” IEEE Trans. Electron Devices 41(5), 703–708 (1994).
[Crossref]

Yu, B.

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Yu, W.

Y. Zhao, Y. Qian, W. Yu, and Z. Chen, “Surface roughness of alumina films deposited by reactive rf sputtering,” Thin Solid Films 286(1-2), 45–48 (1996).
[Crossref]

Zhang, S.

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

Zhang, X.

Zhang, Z.

A. Ghanekar, M. Sun, Z. Zhang, and Y. Zheng, “Optimal design of wavelength selective thermal emitter for thermophotovoltaic applications,” J. Therm. Sci. Eng. Appl. 10(1), 011004 (2018).
[Crossref]

L. Wang and Z. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[Crossref]

L. Wang and Z. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129(1), 79–90 (2007).
[Crossref]

Z. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007).

Zhang, Z. M.

P. Yang, C. Chen, and Z. M. Zhang, “A dual-layer structure with record-high solar reflectance for daytime radiative cooling,” Sol. Energy 169, 316–324 (2018).
[Crossref]

Zhao, Y.

Y. Zhao, Y. Qian, W. Yu, and Z. Chen, “Surface roughness of alumina films deposited by reactive rf sputtering,” Thin Solid Films 286(1-2), 45–48 (1996).
[Crossref]

Zheng, Y.

Y. Tian, A. Ghanekar, L. Qian, M. Ricci, X. Liu, G. Xiao, O. Gregory, and Y. Zheng, “Near-infrared optics of nanoparticles embedded silica thin films,” Opt. Express 27(4), A148–A157 (2019).
[Crossref]

A. Ghanekar, M. Sun, Z. Zhang, and Y. Zheng, “Optimal design of wavelength selective thermal emitter for thermophotovoltaic applications,” J. Therm. Sci. Eng. Appl. 10(1), 011004 (2018).
[Crossref]

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
[Crossref]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
[Crossref]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
[Crossref]

Zhou, C.

J. Wu, C. Zhou, H. Cao, and A. Hu, “Polarization-dependent and-independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Adv. Mater. (2)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers (adv. mater. 23/2012),” Adv. Mater. 24(23), OP181 (2012).
[Crossref]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater. 19(21), 3628–3632 (2007).
[Crossref]

Adv. Opt. Mater. (1)

S. Han, J.-H. Shin, P.-H. Jung, H. Lee, and B. J. Lee, “Broadband solar thermal absorber based on optical metamaterials for high-temperature applications,” Adv. Opt. Mater. 4(8), 1265–1273 (2016).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

L. Wang and Z. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[Crossref]

Desalination (1)

H. M. Qiblawey and F. Banat, “Solar thermal desalination technologies,” Desalination 220(1-3), 633–644 (2008).
[Crossref]

Electron. Mater. Lett. (1)

A. Isenstadt and J. Xu, “Subwavelength metal optics and antireflection,” Electron. Mater. Lett. 9(2), 125–132 (2013).
[Crossref]

Energy Environ. Sci. (2)

N. Wang, L. Han, H. He, N.-H. Park, and K. Koumoto, “A novel high-performance photovoltaic–thermoelectric hybrid device,” Energy Environ. Sci. 4(9), 3676–3679 (2011).
[Crossref]

F. Cao, D. Kraemer, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, G. Chen, and Z. Ren, “A high-performance spectrally-selective solar absorber based on a yttria-stabilized zirconia cermet with high-temperature stability,” Energy Environ. Sci. 8(10), 3040–3048 (2015).
[Crossref]

IEEE Electron Device Lett. (1)

H. Kanoh, O. Sugiura, P. Breddels, and M. Matsumura, “Amorphous-silicon/silicon-nitride thin-film transistors fabricated by plasma-free (chemical vapor deposition) method,” IEEE Electron Device Lett. 11(6), 258–260 (1990).
[Crossref]

IEEE Trans. Electron Devices (1)

M. Ino, N. Inoue, and M. Yoshimaru, “Silicon nitride thin-film deposition by lpcvd with in situ hf vapor cleaning and its application to stacked dram capacitor fabrication,” IEEE Trans. Electron Devices 41(5), 703–708 (1994).
[Crossref]

J. Appl. Phys. (2)

T. Vink, W. Walrave, J. Daams, A. Dirks, M. Somers, and K. Van den Aker, “Stress, strain, and microstructure in thin tungsten films deposited by dc magnetron sputtering,” J. Appl. Phys. 74(2), 988–995 (1993).
[Crossref]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[Crossref]

J. Eur. Opt. Soc. publications (1)

L. Gao, F. Lemarchand, and M. Lequime, “Refractive index determination of sio2 layer in the uv/vis/nir range: spectrophotometric reverse engineering on single and bi-layer designs,” J. Eur. Opt. Soc. publications 8, 13010 (2013).
[Crossref]

J. Heat Transfer (3)

Y.-B. Chen, Z. Zhang, and P. Timans, “Radiative properties of patterned wafers with nanoscale linewidth,” J. Heat Transfer 129(1), 79–90 (2007).
[Crossref]

B. J. Lee, Y.-B. Chen, S. Han, F.-C. Chiu, and H. J. Lee, “Wavelength-selective solar thermal absorber with two-dimensional nickel gratings,” J. Heat Transfer 136(7), 072702 (2014).
[Crossref]

L. Wang and Z. Zhang, “Measurement of coherent thermal emission due to magnetic polaritons in subwavelength microstructures,” J. Heat Transfer 135(9), 091505 (2013).
[Crossref]

J. Mod. Opt. (1)

P. Lalanne and D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43(10), 2063–2085 (1996).
[Crossref]

J. Photonics Energy (1)

Y. Tian, A. Ghanekar, X. Liu, J. Sheng, and Y. Zheng, “Tunable wavelength selectivity of photonic metamaterials-based thermal devices,” J. Photonics Energy 9(03), 1 (2018).
[Crossref]

J. Sol. Energy Eng. (1)

C. K. Ho, A. R. Mahoney, A. Ambrosini, M. Bencomo, A. Hall, and T. N. Lambert, “Characterization of pyromark 2500 paint for high-temperature solar receivers,” J. Sol. Energy Eng. 136(1), 014502 (2014).
[Crossref]

J. Therm. Sci. Eng. Appl. (1)

A. Ghanekar, M. Sun, Z. Zhang, and Y. Zheng, “Optimal design of wavelength selective thermal emitter for thermophotovoltaic applications,” J. Therm. Sci. Eng. Appl. 10(1), 011004 (2018).
[Crossref]

Materials (1)

A. Ghanekar, Y. Tian, S. Zhang, Y. Cui, and Y. Zheng, “Mie-metamaterials-based thermal emitter for near-field thermophotovoltaic systems,” Materials 10(8), 885 (2017).
[Crossref]

Nano Lett. (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref]

Nat. Energy (1)

D. Kraemer, Q. Jie, K. McEnaney, F. Cao, W. Liu, L. A. Weinstein, J. Loomis, Z. Ren, and G. Chen, “Concentrating solar thermoelectric generators with a peak efficiency of 7.4%,” Nat. Energy 1(11), 16153 (2016).
[Crossref]

Nat. Mater. (1)

D. Kraemer, B. Poudel, H.-P. Feng, J. C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, “High-performance flat-panel solar thermoelectric generators with high thermal concentration,” Nat. Mater. 10(7), 532–538 (2011).
[Crossref]

Nat. News (1)

X. Lim, “How heat from the sun can keep us all cool,” Nat. News 542(7639), 23–24 (2017).
[Crossref]

Nature (1)

A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref]

Opt. Commun. (1)

J. Wu, C. Zhou, H. Cao, and A. Hu, “Polarization-dependent and-independent spectrum selective absorption based on a metallic grating structure,” Opt. Commun. 309, 57–63 (2013).
[Crossref]

Opt. Express (12)

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using pecvd: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
[Crossref]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

S. Ferré, A. Peinado, E. Garcia-Caurel, V. Trinité, M. Carras, and R. Ferreira, “Comparative study of sio 2, si 3 n 4 and tio 2 thin films as passivation layers for quantum cascade lasers,” Opt. Express 24(21), 24032–24044 (2016).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
[Crossref]

A. Ghanekar, L. Lin, J. Su, H. Sun, and Y. Zheng, “Role of nanoparticles in wavelength selectivity of multilayered structures in the far-field and near-field regimes,” Opt. Express 23(19), A1129–A1139 (2015).
[Crossref]

M. Ono, K. Chen, W. Li, and S. Fan, “Self-adaptive radiative cooling based on phase change materials,” Opt. Express 26(18), A777–A787 (2018).
[Crossref]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[Crossref]

A. Ghanekar, L. Lin, and Y. Zheng, “Novel and efficient mie-metamaterial thermal emitter for thermophotovoltaic systems,” Opt. Express 24(10), A868–A877 (2016).
[Crossref]

J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, and M. Yan, “Light absorber based on nano-spheres on a substrate reflector,” Opt. Express 21(6), 6697–6706 (2013).
[Crossref]

Y. Tian, A. Ghanekar, L. Qian, M. Ricci, X. Liu, G. Xiao, O. Gregory, and Y. Zheng, “Near-infrared optics of nanoparticles embedded silica thin films,” Opt. Express 27(4), A148–A157 (2019).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6), A1078–A1093 (2013).
[Crossref]

Phys. Rev. B (2)

D. Y. Shchegolkov, A. Azad, J. O’Hara, and E. Simakov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B 82(20), 205117 (2010).
[Crossref]

W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39(14), 9852–9858 (1989).
[Crossref]

Phys. Rev. Lett. (1)

R. Marques, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of em waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89(18), 183901 (2002).
[Crossref]

Sol. Energy (3)

G. E. McDonald, “Spectral reflectance properties of black chrome for use as a solar selective coating,” Sol. Energy 17(2), 119–122 (1975).
[Crossref]

D. Mills, “Advances in solar thermal electricity technology,” Sol. Energy 76(1-3), 19–31 (2004).
[Crossref]

P. Yang, C. Chen, and Z. M. Zhang, “A dual-layer structure with record-high solar reflectance for daytime radiative cooling,” Sol. Energy 169, 316–324 (2018).
[Crossref]

Sol. Energy Mater. (2)

R. Pettit, R. Sowell, and I. Hall, “Black chrome solar selective coatings optimized for high temperature applications,” Sol. Energy Mater. 7(2), 153–170 (1982).
[Crossref]

J. Sweet, R. Pettit, and M. Chamberlain, “Optical modeling and aging characteristics of thermally stable black chrome solar selective coatings,” Sol. Energy Mater. 10(3-4), 251–286 (1984).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

H. Wang, V. P. Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

F. Cao, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, and Z. Ren, “A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in sio 2 deposited on lanthanum aluminate,” Sol. Energy Mater. Sol. Cells 160, 12–17 (2017).
[Crossref]

Surf. Coat. Technol. (1)

R. Cremer, M. Witthaut, D. Neuschütz, G. Erkens, T. Leyendecker, and M. Feldhege, “Comparative characterization of alumina coatings deposited by rf, dc and pulsed reactive magnetron sputtering,” Surf. Coat. Technol. 120-121, 213–218 (1999).
[Crossref]

Thin Solid Films (1)

Y. Zhao, Y. Qian, W. Yu, and Z. Chen, “Surface roughness of alumina films deposited by reactive rf sputtering,” Thin Solid Films 286(1-2), 45–48 (1996).
[Crossref]

Other (12)

W. C. Chew and W. C. Chew, Waves and fields in inhomogeneous media, vol. 522 (IEEE press New York, 1995).

M. R. Querry, “Optical constants,” Tech. rep., MISSOURI UNIV-KANSAS CITY (1985).

M. S. Wheeler, “A scattering-based approach to the design, analysis, and experimental verification of magnetic metamaterials made from dielectrics,” Ph.D. thesis (2010).

H. Kato, K. Orito, H. Kikuchi, and S. Maku, “Method of cvd for forming silicon nitride film on substrate,” (2006). US Patent 7,094,708.

A. Berk, G. P. Anderson, L. S. Bernstein, P. K. Acharya, H. Dothe, M. W. Matthew, S. M. Adler-Golden, J. H. Chetwynd, S. C. Richtsmeier, B. Pukall, C. L. Allred, L. S. Jeong, and M. L. Hoke, Modtran4 radiative transfer modeling for atmospheric correction, in Optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol. 3756 (International Society for Optics and Photonics, 1999), pp. 348–354.

P.-M. Robitaille, “Kirchhoff’s law of thermal emission: 150 years,” in Progress in Physics, Vol. 4 (Progress in Physics, 2009) pp. 3–13.

Weatherground, “Weather conditions,” https://www.wunderground.com/history/daily/us/ma/boston/KBOS/date/2018-7-10 (2018). [Online; accessed 10-July-2018].

PVEDUCATION.ORG, “Calculation of Solar Insolation,” https://www.pveducation.org/pvcdrom/properties-of-sunlight/calculation-of-solar-insolation (2018).

U. Kreibig and M. Vollmer, Optical properties of metal clusters, vol. 25 (Springer Berlin, 1995).

R. Siegel, Thermal radiation heat transfer, vol. 1 (CRC press, 2001).

Z. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007).

A. S. (ASTM), “Calculation of Solar Insolation at AM1.5,” https://www.nrel.gov/grid/solar-resource/spectra.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (A) A typical solar thermal energy conversion system. (B) Solar spectral irradiance (AM1.5, global tilt), radiative heat flux of blackbody thermal radiation at 200 $^{\circ }C$ and 500 $^{\circ }C$, and reflectivity spectrum of ideal selective solar absorber and black surface.
Fig. 2.
Fig. 2. Schematics of 1-D and 2-D grating-Mie-metamaterial based solar absorbers. (A) 1-D triangular Al$_2$O$_3$ surface gratings of height, $h$ = 150 nm, period, $\Lambda$ = 100 nm, on top of W-Si$_3$N$_4$-W stacks with the thickness of $t_1$ = 12 nm, $t_2$ = 35 nm, and $t_3$ = 500 nm, respectively. The Al$_2$O$_3$ triangular grating is doped with 5 nm in radius W nanoparticles with a volume fraction, $f$, of 25%. (B) 2-D pyramid encapsulated with W nanoparticles ($r$ = 5 nm in radius with a volume fraction, $f$, of 25%) sits on stockpiles of W-Al$_2$O$_3$-W. The thickness of W, Al$_2$O$_3$, and W is 10 nm, 40 nm, and 500 nm, respectively. The height of the surface grating layer is 200 nm and the period $\Lambda$ = 200 nm in both $x$ and $y$ direction.
Fig. 3.
Fig. 3. (A) Normalized spectral distribution of solar heat flux (AM 1.5) and normalized thermal radiation of a 500 $^{\circ }C$ blackbody, as well as the calculated reflectivity spectra of proposed 1-D and 2-D surface grating-Mie-metamaterials. Normal reflectivity spectra as a function of the thickness of 1-D (B) and 2-D (C) surface gratings layer, $h_1$ and $h_2$ are the height of the 1-D and 2-D triangular surface gratings, respectively.
Fig. 4.
Fig. 4. Normal reflectivity spectra as a function of W nanoparticles volume fraction, $f$ = 10%, 20% or 30%, for 1-D (A) and 2-D (B) surface grating-Mie-metamaterials, $f_1$ and $f_2$ defines the volume fractions of W nanoparticles embedded in the 1-D and 2-D Al$_2$O$_3$ host, respectively. 1-D (C) and 2-D (D), reflectivity spectra vary as the size of W nanoparticles increases ($r$ = 1, 3, and 5 nm), $r_1$ and $r_2$ denotes the size of the W nanoparticles in the 1-D and 2-D triangular surface grating structures, respectively. Refractive indices of W, SiO2 and SiO2 doped with W nanoparticles of volume fraction 20% and 10 nm radius. (E) Real part of refractive index. (F) Imaginary part of refractive index.
Fig. 5.
Fig. 5. Angle dependent reflectivity of TE polarization and TM polarization for proposed 1-D (A) and 2-D (B) selective solar absorbers contour plotted against wavelength, $\lambda$ and angle of incidence, $\theta$.
Fig. 6.
Fig. 6. (A) Calculated photon-to-heat conversion efficiency of an ideal selective absorber, the multilayer solar absorber with measured/simulated radiative properties, and a black surface as a function of absorber operational temperature, T$_{abs}$, under unconcentrated solar light; (B) Photon-to-heat conversion efficiency for abovementioned four absorber surfaces as a function of concentration factors, CF, at an absorber operational temperature of T$_{abs}$ = 500 $^{\circ }C$.
Fig. 7.
Fig. 7. (A) Thermal performance of the 1-D (orange solid curve), 2-D (yellow solid curve) grating-Mie-metamaterials, and the black surface (purple solid curve) over a one-day cycle from sunrise (5:00 a.m.) to one hour after sunset (8:00 p.m.) at a varying ambient temperature (blue solid curve) under 10 suns (CF = 10). (B) The stagnation temperature of 1-D, 2-D surface gratings selective absorbers, and black surface at various concentration factors from 1 sun to 500 suns.

Tables (2)

Tables Icon

Table 1. Total normal absorptance and emittance of the designed 1-D and 2-D grating-Mie-metamaterials at $T_{abs}$ = 200 $^{\circ }C$ and 500 $^{\circ }C$.

Tables Icon

Table 2. Reflectivity of the designed 1-D and 2-D grating-Mie-metamaterials at solar irradiance peak of 0.55 $\mu$m, with various incident angles and for both TE and TM polarizations.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

η a b s = α a b s ϵ a b s σ ( T a b s 4 T a m b 4 ) C F Q a b s
α a b s = 0.3 μ m 4.0 μ m I s u n ( λ , θ , ϕ ) α ( λ , θ , ϕ ) d λ 0.3 μ m 4.0 μ m I s u n ( λ , θ , ϕ ) d λ = 0.3 μ m 4.0 μ m I s u n ( λ , θ , ϕ ) [ 1 R ( λ , θ , ϕ ) ] d λ 0.3 μ m 4.0 μ m I s u n ( λ , θ , ϕ ) d λ
ϵ abs = 2.5 μ m 20 μ m I b b ( λ , θ , ϕ ) ϵ ( λ , θ , ϕ ) d λ 2.5 μ m 20 μ m I b b ( λ , θ , ϕ ) d λ = 2.5 μ m 20 μ m I b b ( λ , θ , ϕ ) [ 1 R ( λ , θ , ϕ ) ] d λ 2.5 μ m 20 μ m I b b ( λ , θ , ϕ ) d λ
ε T E , 2 = ε T E , 0 [ 1 + π 2 3 ( Λ λ ) 2 ϕ 2 ( 1 ϕ ) 2 ( ε A ε B ) 2 ε T E , 0 ]
ε T M , 2 = ε T M , 0 [ 1 + π 2 3 ( Λ λ ) 2 ϕ 2 ( 1 ϕ ) 2 ( ε A ε B ) 2 ε T E , 0 ( ε T M , 0 ε A ε B ) 2 ]
ε T E , 0 = ϕ ε A + ( 1 ϕ ) ε B
ε T M , 0 = ( ϕ ε A + 1 ϕ ε B ) 1
n 2 D = [ n ¯ + 2 n ^ 2 D + 2 n ˇ 2 D ] / 5
n ¯ = ( 1 f 2 ) n A + f 2 n B
ε ^ 2 D = ( 1 f ) ε A + f ε
1 / ε ˇ 2 D = ( 1 f ) / ε A + f / ε
ε = ( 1 f ) ε A + f ε B
1 / ε = ( 1 f ) / ε A + f / ε B
ε e f f = ε m ( r 3 + 2 α r f r 3 α r f )
a 1 , r = ε n p ψ 1 ( x n p ) ψ 1 ( x m ) ε m ψ 1 ( x m ) ψ 1 ( x n p ) ε n p ψ 1 ( x n p ) ξ 1 ( x m ) ε m ξ 1 ( x m ) ψ 1 ( x n p )
ϵ ( ω ) = c 2 ω 2 0 ω / c d k ρ k ρ μ = s , p ( 1 | R ~ h ( μ ) | 2 | T ~ h ( μ ) | 2 )
Q t o t a l ( T a b s , T a m b ) = Q s u n ( T a b s ) + Q a m b ( T a m b ) Q r e e m i t ( T a b s )
Q s u n ( T a b s ) = A C F 0 d λ I A M 1.5 ( λ ) α ( λ , θ s u n , T a b s )
Q a m b ( T a m b ) = A 0 d λ I B B ( T a m b , λ ) α ( λ , θ , ϕ , T a b s ) ϵ ( λ , θ , ϕ )
Q r e e m i t ( T a b s ) = A 0 d λ I B B ( T a b s , λ ) ϵ ( λ , θ , ϕ , T a b s )
C a b s d T d t = Q t o t a l ( T a b s , T a m b )

Metrics