Abstract

We theoretically study the optical parametric amplification (OPA) process seeded by a Laguerre–Gaussian (LG) mode. Based on the nonlinear coupled-wave equations, we analyze the overlap integral among interacting LG beams, which presents the selection laws for the azimuthal and radial indices of a pure LG mode in the OPA process. In the numerical simulations, we demonstrate the amplification of an LG01 mode as an example with high purity and high gain. Our results provide a potential way to efficiently amplify an LG mode for optical communications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical investigation on the generation of high-order Laguerre–Gaussian beams in end-pumped solid-state lasers by introducing loss control

Ajian Hu, Jian Lei, Peifeng Chen, Ying Wang, and Shumo Li
Appl. Opt. 53(33) 7845-7853 (2014)

Realization of a scalable Laguerre–Gaussian mode sorter based on a robust radial mode sorter

Dongzhi Fu, Yiyu Zhou, Rui Qi, Stone Oliver, Yunlong Wang, Seyed Mohammad Hashemi Rafsanjani, Jiapeng Zhao, Mohammad Mirhosseini, Zhimin Shi, Pei Zhang, and Robert W. Boyd
Opt. Express 26(25) 33057-33065 (2018)

Effect of high-dimensional entanglement of Laguerre-Gaussian modes in parametric downconversion

Daisuke Kawase, Yoko Miyamoto, Mitsuo Takeda, Keiji Sasaki, and Shigeki Takeuchi
J. Opt. Soc. Am. B 26(4) 797-804 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref]
  3. S. Tao, X. C. Yuan, J. Lin, X. Peng, and H. Niu, “Fractional optical vortex beam induced rotation of particles,” Opt. Express 13(20), 7726–7731 (2005).
    [Crossref]
  4. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
    [Crossref]
  5. A. Jesacher, S. Furhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Holographic optical tweezers for object manipulations at an air-liquid surface,” Opt. Express 14(13), 6342–6352 (2006).
    [Crossref]
  6. D. Hetharia, M. P. van Exter, and W. Löffler, “The Role of Spatial Coherence and Orbital Angular Momentum of Light in Astronomy,” Phys. Rev. A 90(6), 063801 (2014).
    [Crossref]
  7. S. Xiao, L. D. Zhang, D. Wei, F. Liu, Y. Zhang, and M. Xiao, “Orbital angular momentum-enhanced measurement of rotation vibration using a Sagnac interferometer,” Opt. Express 26(2), 1997 (2018).
    [Crossref]
  8. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref]
  9. A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
    [Crossref]
  10. J. T. Barreiro, T. C. Wei, and P. G. B. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
    [Crossref]
  11. D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
    [Crossref]
  12. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [Crossref]
  13. J. Guo, C. Cai, L. Ma, K. Liu, H. Sun, and J. Gao, “Higher order mode entanglement in a type II optical parametric oscillator,” Opt. Express 25(5), 4985 (2017).
    [Crossref]
  14. A. Trichili, C. Rosales-Guzman, A. Dudley, B. Ndagano, A. B. Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6(1), 27674 (2016).
    [Crossref]
  15. G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices,” Opt. Lett. 41(15), 3447 (2016).
    [Crossref]
  16. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second Harmonic Generation and the Orbital Angular Momentum of Light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
    [Crossref]
  17. X. Fang, D. Wei, Y. M. Wang, H. J. Wang, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Conical third-harmonic generation in a hexagonally poled LiTaO3 crystal,” Appl. Phys. Lett. 110(11), 111105 (2017).
    [Crossref]
  18. X. Fang, G. Yang, D. Wei, D. Wei, R. Ni, W. Ji, Y. Zhang, X. Hu, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal,” Opt. Lett. 41(6), 1169–1172 (2016).
    [Crossref]
  19. X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
    [Crossref]
  20. D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zhou, and G. C. Guo, “Linear up-conversion of orbital angular momentum,” Opt. Lett. 37(15), 3270 (2012).
    [Crossref]
  21. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
    [Crossref]
  22. M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
    [Crossref]
  23. D. Wei, J. L. Guo, X. Y. Fang, D. Z. Wei, R. Ni, P. Chen, X. P. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556 (2017).
    [Crossref]
  24. Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
    [Crossref]
  25. X. Fang, Z. Y. Kuang, P. Chen, H. C. Yang, Q. Li, W. Hu, Y. Lu, Y. Zhang, and M. Xiao, “Examining second-harmonic generation of high-order LG modes through a single cylindrical lens,” Opt. Lett. 42(21), 4387 (2017).
    [Crossref]
  26. R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
    [Crossref]
  27. R. W. Boyd, Nonlinear Optics, 3rd ed.(Academic Press, 2012).
  28. C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. Lugiato, “Transverse effects and mode couplings in OPOs,” Appl. Phys. B: Lasers Opt. 66(6), 685–699 (1998).
    [Crossref]
  29. L. J. Pereira, W. T. Buono, D. S. Tasca, K. Dechoum, and A. Z. Khoury, “Orbital-angular-momentum mixing in type-II second-harmonic generation,” Phys. Rev. A 96(5), 053856 (2017).
    [Crossref]
  30. J. Lowney, T. Roger, D. Faccio, and E. M. Wright, “Dichroism for Orbital Angular Momentum using Stimulated Parametric Down Conversion,” Phys. Rev. A 90(5), 053828 (2014).
    [Crossref]

2018 (1)

2017 (6)

J. Guo, C. Cai, L. Ma, K. Liu, H. Sun, and J. Gao, “Higher order mode entanglement in a type II optical parametric oscillator,” Opt. Express 25(5), 4985 (2017).
[Crossref]

X. Fang, D. Wei, Y. M. Wang, H. J. Wang, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Conical third-harmonic generation in a hexagonally poled LiTaO3 crystal,” Appl. Phys. Lett. 110(11), 111105 (2017).
[Crossref]

D. Wei, J. L. Guo, X. Y. Fang, D. Z. Wei, R. Ni, P. Chen, X. P. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556 (2017).
[Crossref]

X. Fang, Z. Y. Kuang, P. Chen, H. C. Yang, Q. Li, W. Hu, Y. Lu, Y. Zhang, and M. Xiao, “Examining second-harmonic generation of high-order LG modes through a single cylindrical lens,” Opt. Lett. 42(21), 4387 (2017).
[Crossref]

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

L. J. Pereira, W. T. Buono, D. S. Tasca, K. Dechoum, and A. Z. Khoury, “Orbital-angular-momentum mixing in type-II second-harmonic generation,” Phys. Rev. A 96(5), 053856 (2017).
[Crossref]

2016 (4)

Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
[Crossref]

X. Fang, G. Yang, D. Wei, D. Wei, R. Ni, W. Ji, Y. Zhang, X. Hu, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal,” Opt. Lett. 41(6), 1169–1172 (2016).
[Crossref]

A. Trichili, C. Rosales-Guzman, A. Dudley, B. Ndagano, A. B. Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6(1), 27674 (2016).
[Crossref]

G. Xie, Y. Ren, Y. Yan, H. Huang, N. Ahmed, L. Li, Z. Zhao, C. Bao, M. Tur, S. Ashrafi, and A. Willner, “Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre-Gaussian beams with different radial indices,” Opt. Lett. 41(15), 3447 (2016).
[Crossref]

2015 (1)

X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
[Crossref]

2014 (2)

J. Lowney, T. Roger, D. Faccio, and E. M. Wright, “Dichroism for Orbital Angular Momentum using Stimulated Parametric Down Conversion,” Phys. Rev. A 90(5), 053828 (2014).
[Crossref]

D. Hetharia, M. P. van Exter, and W. Löffler, “The Role of Spatial Coherence and Orbital Angular Momentum of Light in Astronomy,” Phys. Rev. A 90(6), 063801 (2014).
[Crossref]

2013 (1)

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

2012 (1)

2011 (1)

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

2008 (1)

J. T. Barreiro, T. C. Wei, and P. G. B. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

2007 (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

2002 (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[Crossref]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

1999 (1)

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

1998 (1)

C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. Lugiato, “Transverse effects and mode couplings in OPOs,” Appl. Phys. B: Lasers Opt. 66(6), 685–699 (1998).
[Crossref]

1996 (1)

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second Harmonic Generation and the Orbital Angular Momentum of Light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Ahmed, N.

Allen, L.

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second Harmonic Generation and the Orbital Angular Momentum of Light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Andersson, E.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Arlt, J.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[Crossref]

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

Ashrafi, S.

Bao, C.

Barreiro, J. T.

J. T. Barreiro, T. C. Wei, and P. G. B. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Bernet, S.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed.(Academic Press, 2012).

Buller, G. S.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Buono, W. T.

L. J. Pereira, W. T. Buono, D. S. Tasca, K. Dechoum, and A. Z. Khoury, “Orbital-angular-momentum mixing in type-II second-harmonic generation,” Phys. Rev. A 96(5), 053856 (2017).
[Crossref]

Cai, C.

Chen, P.

Chen, Z.

X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
[Crossref]

Cohadon, P. F.

C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. Lugiato, “Transverse effects and mode couplings in OPOs,” Appl. Phys. B: Lasers Opt. 66(6), 685–699 (1998).
[Crossref]

Dada, A. C.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Dechoum, K.

L. J. Pereira, W. T. Buono, D. S. Tasca, K. Dechoum, and A. Z. Khoury, “Orbital-angular-momentum mixing in type-II second-harmonic generation,” Phys. Rev. A 96(5), 053856 (2017).
[Crossref]

Dholakia, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[Crossref]

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second Harmonic Generation and the Orbital Angular Momentum of Light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

Ding, D. S.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zhou, and G. C. Guo, “Linear up-conversion of orbital angular momentum,” Opt. Lett. 37(15), 3270 (2012).
[Crossref]

Dowling, J. P.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

Dudley, A.

A. Trichili, C. Rosales-Guzman, A. Dudley, B. Ndagano, A. B. Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6(1), 27674 (2016).
[Crossref]

Fabre, C.

C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. Lugiato, “Transverse effects and mode couplings in OPOs,” Appl. Phys. B: Lasers Opt. 66(6), 685–699 (1998).
[Crossref]

Faccio, D.

J. Lowney, T. Roger, D. Faccio, and E. M. Wright, “Dichroism for Orbital Angular Momentum using Stimulated Parametric Down Conversion,” Phys. Rev. A 90(5), 053828 (2014).
[Crossref]

Fang, X.

X. Fang, D. Wei, Y. M. Wang, H. J. Wang, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Conical third-harmonic generation in a hexagonally poled LiTaO3 crystal,” Appl. Phys. Lett. 110(11), 111105 (2017).
[Crossref]

X. Fang, Z. Y. Kuang, P. Chen, H. C. Yang, Q. Li, W. Hu, Y. Lu, Y. Zhang, and M. Xiao, “Examining second-harmonic generation of high-order LG modes through a single cylindrical lens,” Opt. Lett. 42(21), 4387 (2017).
[Crossref]

X. Fang, G. Yang, D. Wei, D. Wei, R. Ni, W. Ji, Y. Zhang, X. Hu, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal,” Opt. Lett. 41(6), 1169–1172 (2016).
[Crossref]

X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
[Crossref]

Fang, X. Y.

D. Wei, J. L. Guo, X. Y. Fang, D. Z. Wei, R. Ni, P. Chen, X. P. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556 (2017).
[Crossref]

Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
[Crossref]

Forbes, A.

A. Trichili, C. Rosales-Guzman, A. Dudley, B. Ndagano, A. B. Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6(1), 27674 (2016).
[Crossref]

Furhapter, S.

Gao, J.

Gatti, A.

C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. Lugiato, “Transverse effects and mode couplings in OPOs,” Appl. Phys. B: Lasers Opt. 66(6), 685–699 (1998).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

Guo, G. C.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zhou, and G. C. Guo, “Linear up-conversion of orbital angular momentum,” Opt. Lett. 37(15), 3270 (2012).
[Crossref]

Guo, J.

Guo, J. L.

Hetharia, D.

D. Hetharia, M. P. van Exter, and W. Löffler, “The Role of Spatial Coherence and Orbital Angular Momentum of Light in Astronomy,” Phys. Rev. A 90(6), 063801 (2014).
[Crossref]

Hu, W.

Hu, X.

X. Fang, G. Yang, D. Wei, D. Wei, R. Ni, W. Ji, Y. Zhang, X. Hu, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal,” Opt. Lett. 41(6), 1169–1172 (2016).
[Crossref]

X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
[Crossref]

Hu, X. P.

Huang, H.

Huang, X. Y.

Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
[Crossref]

Huguenin, J. A. O.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

Jesacher, A.

Ji, W.

Khoury, A. Z.

L. J. Pereira, W. T. Buono, D. S. Tasca, K. Dechoum, and A. Z. Khoury, “Orbital-angular-momentum mixing in type-II second-harmonic generation,” Phys. Rev. A 96(5), 053856 (2017).
[Crossref]

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

Kuang, Z. Y.

Kwiat, P. G. B.

J. T. Barreiro, T. C. Wei, and P. G. B. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

Lanning, R. N.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

Leach, J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

Li, L.

Li, Q.

Lin, J.

Liu, D.

X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
[Crossref]

Liu, F.

Liu, K.

Löffler, W.

D. Hetharia, M. P. van Exter, and W. Löffler, “The Role of Spatial Coherence and Orbital Angular Momentum of Light in Astronomy,” Phys. Rev. A 90(6), 063801 (2014).
[Crossref]

Lowney, J.

J. Lowney, T. Roger, D. Faccio, and E. M. Wright, “Dichroism for Orbital Angular Momentum using Stimulated Parametric Down Conversion,” Phys. Rev. A 90(5), 053828 (2014).
[Crossref]

Lu, Y.

Lu, Y. Q.

Lugiato, L.

C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. Lugiato, “Transverse effects and mode couplings in OPOs,” Appl. Phys. B: Lasers Opt. 66(6), 685–699 (1998).
[Crossref]

Ma, L.

MacDonald, M. P.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[Crossref]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Marte, M. A. M.

C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. Lugiato, “Transverse effects and mode couplings in OPOs,” Appl. Phys. B: Lasers Opt. 66(6), 685–699 (1998).
[Crossref]

Martinelli, M.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

Maurer, C.

Mikhailov, E. E.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Ndagano, B.

A. Trichili, C. Rosales-Guzman, A. Dudley, B. Ndagano, A. B. Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6(1), 27674 (2016).
[Crossref]

Ni, R.

Niu, H.

Novikova, I.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

Nussenzveig, P.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

Padgett, M. J.

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second Harmonic Generation and the Orbital Angular Momentum of Light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

Paterson, L.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[Crossref]

Peng, X.

Pereira, L. J.

L. J. Pereira, W. T. Buono, D. S. Tasca, K. Dechoum, and A. Z. Khoury, “Orbital-angular-momentum mixing in type-II second-harmonic generation,” Phys. Rev. A 96(5), 053856 (2017).
[Crossref]

Ren, Y.

Ritsch, H.

C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. Lugiato, “Transverse effects and mode couplings in OPOs,” Appl. Phys. B: Lasers Opt. 66(6), 685–699 (1998).
[Crossref]

Ritsch-Marte, M.

Roger, T.

J. Lowney, T. Roger, D. Faccio, and E. M. Wright, “Dichroism for Orbital Angular Momentum using Stimulated Parametric Down Conversion,” Phys. Rev. A 90(5), 053828 (2014).
[Crossref]

Rosales-Guzman, C.

A. Trichili, C. Rosales-Guzman, A. Dudley, B. Ndagano, A. B. Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6(1), 27674 (2016).
[Crossref]

Salem, A. B.

A. Trichili, C. Rosales-Guzman, A. Dudley, B. Ndagano, A. B. Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6(1), 27674 (2016).
[Crossref]

Schwob, C.

C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. Lugiato, “Transverse effects and mode couplings in OPOs,” Appl. Phys. B: Lasers Opt. 66(6), 685–699 (1998).
[Crossref]

Shi, B. S.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zhou, and G. C. Guo, “Linear up-conversion of orbital angular momentum,” Opt. Lett. 37(15), 3270 (2012).
[Crossref]

Sibbett, W.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[Crossref]

Simpson, N. B.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second Harmonic Generation and the Orbital Angular Momentum of Light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Sun, H.

Tao, S.

Tasca, D. S.

L. J. Pereira, W. T. Buono, D. S. Tasca, K. Dechoum, and A. Z. Khoury, “Orbital-angular-momentum mixing in type-II second-harmonic generation,” Phys. Rev. A 96(5), 053856 (2017).
[Crossref]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Trichili, A.

A. Trichili, C. Rosales-Guzman, A. Dudley, B. Ndagano, A. B. Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6(1), 27674 (2016).
[Crossref]

Tur, M.

van Exter, M. P.

D. Hetharia, M. P. van Exter, and W. Löffler, “The Role of Spatial Coherence and Orbital Angular Momentum of Light in Astronomy,” Phys. Rev. A 90(6), 063801 (2014).
[Crossref]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Volke-Sepulveda, K.

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[Crossref]

Wang, H. J.

X. Fang, D. Wei, Y. M. Wang, H. J. Wang, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Conical third-harmonic generation in a hexagonally poled LiTaO3 crystal,” Appl. Phys. Lett. 110(11), 111105 (2017).
[Crossref]

Wang, Q. J.

Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
[Crossref]

Wang, Y.

Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
[Crossref]

Wang, Y. M.

X. Fang, D. Wei, Y. M. Wang, H. J. Wang, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Conical third-harmonic generation in a hexagonally poled LiTaO3 crystal,” Appl. Phys. Lett. 110(11), 111105 (2017).
[Crossref]

Wei, D.

Wei, D. Z.

D. Wei, J. L. Guo, X. Y. Fang, D. Z. Wei, R. Ni, P. Chen, X. P. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556 (2017).
[Crossref]

Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
[Crossref]

X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
[Crossref]

Wei, T. C.

J. T. Barreiro, T. C. Wei, and P. G. B. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Willner, A.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Wright, E. M.

J. Lowney, T. Roger, D. Faccio, and E. M. Wright, “Dichroism for Orbital Angular Momentum using Stimulated Parametric Down Conversion,” Phys. Rev. A 90(5), 053828 (2014).
[Crossref]

Xiao, M.

S. Xiao, L. D. Zhang, D. Wei, F. Liu, Y. Zhang, and M. Xiao, “Orbital angular momentum-enhanced measurement of rotation vibration using a Sagnac interferometer,” Opt. Express 26(2), 1997 (2018).
[Crossref]

X. Fang, Z. Y. Kuang, P. Chen, H. C. Yang, Q. Li, W. Hu, Y. Lu, Y. Zhang, and M. Xiao, “Examining second-harmonic generation of high-order LG modes through a single cylindrical lens,” Opt. Lett. 42(21), 4387 (2017).
[Crossref]

D. Wei, J. L. Guo, X. Y. Fang, D. Z. Wei, R. Ni, P. Chen, X. P. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556 (2017).
[Crossref]

X. Fang, D. Wei, Y. M. Wang, H. J. Wang, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Conical third-harmonic generation in a hexagonally poled LiTaO3 crystal,” Appl. Phys. Lett. 110(11), 111105 (2017).
[Crossref]

Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
[Crossref]

X. Fang, G. Yang, D. Wei, D. Wei, R. Ni, W. Ji, Y. Zhang, X. Hu, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal,” Opt. Lett. 41(6), 1169–1172 (2016).
[Crossref]

X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
[Crossref]

Xiao, S.

Xiao, Z.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

Xie, G.

Yan, Y.

Yang, G.

Yang, H. C.

Yuan, X. C.

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Zghal, M.

A. Trichili, C. Rosales-Guzman, A. Dudley, B. Ndagano, A. B. Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6(1), 27674 (2016).
[Crossref]

Zhang, L. D.

Zhang, M.

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

Zhang, Y.

S. Xiao, L. D. Zhang, D. Wei, F. Liu, Y. Zhang, and M. Xiao, “Orbital angular momentum-enhanced measurement of rotation vibration using a Sagnac interferometer,” Opt. Express 26(2), 1997 (2018).
[Crossref]

X. Fang, Z. Y. Kuang, P. Chen, H. C. Yang, Q. Li, W. Hu, Y. Lu, Y. Zhang, and M. Xiao, “Examining second-harmonic generation of high-order LG modes through a single cylindrical lens,” Opt. Lett. 42(21), 4387 (2017).
[Crossref]

D. Wei, J. L. Guo, X. Y. Fang, D. Z. Wei, R. Ni, P. Chen, X. P. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556 (2017).
[Crossref]

X. Fang, D. Wei, Y. M. Wang, H. J. Wang, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Conical third-harmonic generation in a hexagonally poled LiTaO3 crystal,” Appl. Phys. Lett. 110(11), 111105 (2017).
[Crossref]

Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
[Crossref]

X. Fang, G. Yang, D. Wei, D. Wei, R. Ni, W. Ji, Y. Zhang, X. Hu, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal,” Opt. Lett. 41(6), 1169–1172 (2016).
[Crossref]

X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
[Crossref]

Zhao, Z.

Zhong, W. H.

Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
[Crossref]

X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
[Crossref]

Zhou, X. B.

Zhou, Z. Y.

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zhou, and G. C. Guo, “Linear up-conversion of orbital angular momentum,” Opt. Lett. 37(15), 3270 (2012).
[Crossref]

Zhu, S. N.

X. Fang, D. Wei, Y. M. Wang, H. J. Wang, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Conical third-harmonic generation in a hexagonally poled LiTaO3 crystal,” Appl. Phys. Lett. 110(11), 111105 (2017).
[Crossref]

D. Wei, J. L. Guo, X. Y. Fang, D. Z. Wei, R. Ni, P. Chen, X. P. Hu, Y. Zhang, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal,” Opt. Express 25(10), 11556 (2017).
[Crossref]

X. Fang, G. Yang, D. Wei, D. Wei, R. Ni, W. Ji, Y. Zhang, X. Hu, W. Hu, Y. Q. Lu, S. N. Zhu, and M. Xiao, “Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal,” Opt. Lett. 41(6), 1169–1172 (2016).
[Crossref]

X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
[Crossref]

Zhu, Y. Z.

Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

C. Schwob, P. F. Cohadon, C. Fabre, M. A. M. Marte, H. Ritsch, A. Gatti, and L. Lugiato, “Transverse effects and mode couplings in OPOs,” Appl. Phys. B: Lasers Opt. 66(6), 685–699 (1998).
[Crossref]

Appl. Phys. Lett. (3)

X. Fang, D. Wei, Y. M. Wang, H. J. Wang, Y. Zhang, X. P. Hu, S. N. Zhu, and M. Xiao, “Conical third-harmonic generation in a hexagonally poled LiTaO3 crystal,” Appl. Phys. Lett. 110(11), 111105 (2017).
[Crossref]

X. Fang, D. Z. Wei, D. Liu, W. H. Zhong, R. Ni, Z. Chen, X. Hu, Y. Zhang, S. N. Zhu, and M. Xiao, “Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal,” Appl. Phys. Lett. 107(16), 161102 (2015).
[Crossref]

Y. Wang, D. Z. Wei, Y. Z. Zhu, X. Y. Huang, X. Y. Fang, W. H. Zhong, Q. J. Wang, Y. Zhang, and M. Xiao, “Conversion of the optical orbital angular momentum in a plasmon-assisted second-harmonic generation,” Appl. Phys. Lett. 109(8), 081105 (2016).
[Crossref]

Nat. Commun. (1)

D. S. Ding, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Single-photon-level quantum image memory based on cold atomic ensembles,” Nat. Commun. 4(1), 2527 (2013).
[Crossref]

Nat. Phys. (3)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities,” Nat. Phys. 7(9), 677–680 (2011).
[Crossref]

J. T. Barreiro, T. C. Wei, and P. G. B. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4(4), 282–286 (2008).
[Crossref]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. A (8)

L. J. Pereira, W. T. Buono, D. S. Tasca, K. Dechoum, and A. Z. Khoury, “Orbital-angular-momentum mixing in type-II second-harmonic generation,” Phys. Rev. A 96(5), 053856 (2017).
[Crossref]

J. Lowney, T. Roger, D. Faccio, and E. M. Wright, “Dichroism for Orbital Angular Momentum using Stimulated Parametric Down Conversion,” Phys. Rev. A 90(5), 053828 (2014).
[Crossref]

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second Harmonic Generation and the Orbital Angular Momentum of Light,” Phys. Rev. A 54(5), R3742–R3745 (1996).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

D. Hetharia, M. P. van Exter, and W. Löffler, “The Role of Spatial Coherence and Orbital Angular Momentum of Light in Astronomy,” Phys. Rev. A 90(6), 063801 (2014).
[Crossref]

R. N. Lanning, Z. Xiao, M. Zhang, I. Novikova, E. E. Mikhailov, and J. P. Dowling, “Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer,” Phys. Rev. A 96(1), 013830 (2017).
[Crossref]

J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59(5), 3950–3952 (1999).
[Crossref]

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004).
[Crossref]

Sci. Rep. (1)

A. Trichili, C. Rosales-Guzman, A. Dudley, B. Ndagano, A. B. Salem, M. Zghal, and A. Forbes, “Optical communication beyond orbital angular momentum,” Sci. Rep. 6(1), 27674 (2016).
[Crossref]

Science (1)

M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296(5570), 1101–1103 (2002).
[Crossref]

Other (1)

R. W. Boyd, Nonlinear Optics, 3rd ed.(Academic Press, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Signal intensity Is versus crystal length for various pump modes with lp = -2 to 3.
Fig. 2.
Fig. 2. Simulated intensity patterns of the amplified signals corresponding to different pump modes.
Fig. 3.
Fig. 3. Rates of different signal modes when different pumps are employed.
Fig. 4.
Fig. 4. The intensity of pure LG01 signal (ms = 0) versus crystal length.
Fig. 5.
Fig. 5. (a) Pure signal (ms = 0) intensity versus crystal length. (b) Signal (ms = 1) intensity versus crystal length. (c) Signal (ms = 2) intensity versus crystal length. (d) Total pump intensity versus crystal length.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

2 E s ( r , z ) + k s 2 E s ( r , z ) = 2 χ ( 2 ) ω s 2 c 2 E p E i 2 E i ( r , z ) + k i 2 E i ( r , z ) = 2 χ ( 2 ) ω i 2 c 2 E p E s 2 E p ( r , z ) + k p 2 E p ( r , z ) = 2 χ ( 2 ) ω p 2 c 2 E s E i
E j = B j ( z ) u m l j ( r , z ) e i k j z
u m l j = 2 π × N m l w j ( 2 r w j ) | l | L m | l | ( 2 r 2 w j 2 ) exp [ i ( k j r 2 2 z ¯ ( 2 m + | l | + 1 ) arctan ( z z R ) + l θ ) ]
A m s l s z = i χ ( 2 ) c ω p ω s ω i n p n s n i ( Λ m p m s m i l p l s l i A m p l p A m i l i ) A m i l i z = i χ ( 2 ) c ω p ω s ω i n p n s n i ( Λ m p m s m i l p l s l i A m p l p A m s l s ) A m p l p z = i χ ( 2 ) c ω p ω s ω i n p n s n i ( ( Λ m p m s m i l p l s l i ) A m s l s A m i l i )
Λ m p m s m i l p l s l i = u m p l p u m s l s u m i l i r d r d θ = 2 π δ l p , l s + l i 0 u m p l p u m s l s u m i l i r d r
0 u m p l p u 0 , l s u m i l i r d r = C o n s t ( 2 r ) | l p | + | l s | + | l i | L m p | l p | ( 2 r 2 w p ( z ) 2 ) L m i | l i | ( 2 r 2 w i ( z ) 2 ) exp ( 2 r 2 w p ( z ) 2 ) r d r = C o n s t 2 × Γ ( λ + 1 ) [ k ( λ 1 k ) ( j ( k j ) ( ( η 1 ) k ( λ μ n k ) ( η η 1 ) j ( λ μ n j ) ) ) ] ( 1 ) n + n
( a b ) = { a ! b ! ( a b ) ! , a > b   0 ,   a < b

Metrics