Abstract

Adaptive Contact Concentration Photovoltaics (ACCPV) is outlined as a scheme to access CPV efficiency improvements without mechanical tracking. This could allow CPV to play a role in applications where maintenance-free reliability and compact size are essential requirements. Conversion efficiency enhancement using sunlight concentration in multi-junction or potentially single junction solar cells due to the well-known increase in the Shockley-Quessar limit are enabled by replacing a tracking system with an array of switchable electrodes. Cell electrodes are segmented and are connected employing a switching system that adapts to sunlight conditions. Unlike CPV systems, the ACCPV concept allows for effective operation in diffuse sunlight conditions. System losses that must be considered in order to determine whether a net benefit for ACCPV exists for a given solar cell type include optical losses, series resistance losses, and Auger losses. The ACCPV concept is clearly presented and relevant system losses are discussed. A 3% absolute increase in triple junction cell efficiency is projected.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tailored free-form optics with movement to integrate tracking in concentrating photovoltaics

Fabian Duerr, Youri Meuret, and Hugo Thienpont
Opt. Express 21(S3) A401-A411 (2013)

High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array

Nobuhiko Hayashi, Daijiro Inoue, Mitsuhiro Matsumoto, Akio Matsushita, Hiroshi Higuchi, Youichirou Aya, and Tohru Nakagawa
Opt. Express 23(11) A594-A603 (2015)

Optical design and demonstration of microtracking CPV module with bi-convex aspheric lens array

Atsushi Ito, Daisuke Sato, and Noboru Yamada
Opt. Express 26(18) A879-A891 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design,” Renewable Sustainable Energy Rev. 60, 394–407 (2016).
    [Crossref]
  2. A. H. Kitai, Principles of Solar Cells, LEDs and Related Devices, Second edition, ISBN: 9781119451020, Wiley, 2018.
  3. F. Famoso, R. Lanzafame, S. Maenza, and P. F. Scandura, “Performance comparison between Low Concentration Photovoltaic and Fixed Angle PV Systems,” Energy Procedia 81, 516–525 (2015).
    [Crossref]
  4. C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
    [Crossref]
  5. M. Martínez, D. Sánchez, G. Calvo-Parra, C. Alamillo, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “Long-term data analysis/ Feedback from ISFOC CPV plants,” AIP Conf. Proc. 2012, 020008 (2018).
    [Crossref]
  6. M. Martínez, D. Sánchez, G. Calvo-Parra, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “8 years of CPV: ISFOC CPV plants, long-term performance analysis and results,” AIP Conf. Proc. 1881, 020007 (2017).
    [Crossref]
  7. X. Wang and A. Barnett, “The Evolving Value of Photovoltaic Module Efficiency,” Appl. Sci. 9(6), 1227 (2019).
    [Crossref]
  8. N. X. Tien and S. Shin, “A Novel Concentrator Photovoltaic (CPV) System with the Improvement of Irradiance Uniformity and the Capturing of Diffuse Solar Radiation,” Appl. Sci. 6(9), 251 (2016).
    [Crossref]
  9. N. Yamada and K. Okamoto, “Experimental measurements of a prototype high-concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation,” Opt. Express 22(S1), A28–A34 (2014).
    [Crossref]
  10. P. Benitez, J. C. Miñano, and R. Alvarez, “Photovoltaic Concentrator with Auxiliary Cells Collecting Diffuse Radiation,” U.S. Patent 2010/0126556 A1, 27 May 2010.
  11. N. Yamada, K. Okamoto, and T. Ijiro, “Feasibility study of harvesting diffuse solar radiation in a high-concentration CPV module for better solar energy conversion,” Proc. 23rd Int’l Photovoltaic Science and Engineering Conf. (PVSEC-23) Taiwan, Oct. 28-Nov 1 2013
  12. M. Z. Shvarts, E. D. Filimonov, S. A. Kozhukhovskaia, M. A. Mintairov, N. K. Timoshina, and V. M. Andreev, “Current mismatch violation in concentrator multijunction solar cells,” AIP Conf. Proc. 1881, 040006 (2017).
    [Crossref]
  13. S. El Himerl, A. Ahaitoufl, S. El-Yahyaouil, A. Mechaqrane, and A. Ouagazzaden, “A Comparative of Four Secondary Optical Elements for CPV Systems,” AIP Conf. Proc. 2012, 030003 (2018).
    [Crossref]
  14. N. J. Ekins-Daukes, P. Sandwell, J. Nelson, A. D. Johnson, G. Duggan, and E. Herniak, “What does CPV need to achieve in order to succeed?” AIP Conf. Proc. 1766, 020004 (2016).
    [Crossref]
  15. A. Blakers, “Development of the PERC Solar Cell,” IEEE J. Photovoltaics 9(3), 629–635 (2019).
    [Crossref]
  16. R. A. Sinton, Y. Kwark, J. Y. Gan, and R. M. Swanson, “27.5-percent silicon concentrator solar cells,” IEEE Electron Device Lett. 7(10), 567–569 (1986).
    [Crossref]
  17. P. Verlinden, R. A. Sinton, and R. M. Swanson, “High efficiency large area back contact concentrator solar cells with a multilevel interconnection,” Int. J. Sol. Energy 6(6), 347–366 (1988).
    [Crossref]
  18. R. R. King, R. A. Sinton, and R. M. Swanson, “Doped surfaces in one sun point contact solar cells,” Appl. Phys. Lett. 54(15), 1460–1462 (1989).
    [Crossref]
  19. R. A. Sinton and R. M. Swanson, “Simplified backside-contact solar cells,” IEEE Trans. Electron Devices 37(2), 348–352 (1990).
    [Crossref]
  20. B. W. Jia, K. H. Tan, W. K. Loke, S. Wicaksono, and S. F. Yoon, “Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer,” J. Cryst. Growth 490(15), 97–103 (2018).
    [Crossref]
  21. D. Ding, S. R. Johnson, S. Q. Yu, and Y. H. Zhang, “A semi-analytical model for semiconductor solar cells,” J. Appl. Phys. 110(12), 123104 (2011).
    [Crossref]
  22. NREL “Best Solar Cell Efficiencies” https://www.nrel.gov/pv/cell-efficiency.html
  23. N. J. Ekins-Daukes, A. Soeriyadi, W. Zhao, S. Bremner, and A. Pusch, “Loss analysis for single junction concentrator solar cells,” AIP Conf. Proc. 2012, 040003 (2018).
    [Crossref]
  24. N. Hayashi, D. Inoue, M. Matsumoto, A. Matsushita, H. Higuchi, Y. Aya, and T. Nakagawa, “High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array,” Opt. Express 23(11), A594–A603 (2015).
    [Crossref]

2019 (2)

X. Wang and A. Barnett, “The Evolving Value of Photovoltaic Module Efficiency,” Appl. Sci. 9(6), 1227 (2019).
[Crossref]

A. Blakers, “Development of the PERC Solar Cell,” IEEE J. Photovoltaics 9(3), 629–635 (2019).
[Crossref]

2018 (5)

B. W. Jia, K. H. Tan, W. K. Loke, S. Wicaksono, and S. F. Yoon, “Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer,” J. Cryst. Growth 490(15), 97–103 (2018).
[Crossref]

S. El Himerl, A. Ahaitoufl, S. El-Yahyaouil, A. Mechaqrane, and A. Ouagazzaden, “A Comparative of Four Secondary Optical Elements for CPV Systems,” AIP Conf. Proc. 2012, 030003 (2018).
[Crossref]

C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
[Crossref]

M. Martínez, D. Sánchez, G. Calvo-Parra, C. Alamillo, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “Long-term data analysis/ Feedback from ISFOC CPV plants,” AIP Conf. Proc. 2012, 020008 (2018).
[Crossref]

N. J. Ekins-Daukes, A. Soeriyadi, W. Zhao, S. Bremner, and A. Pusch, “Loss analysis for single junction concentrator solar cells,” AIP Conf. Proc. 2012, 040003 (2018).
[Crossref]

2017 (2)

M. Martínez, D. Sánchez, G. Calvo-Parra, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “8 years of CPV: ISFOC CPV plants, long-term performance analysis and results,” AIP Conf. Proc. 1881, 020007 (2017).
[Crossref]

M. Z. Shvarts, E. D. Filimonov, S. A. Kozhukhovskaia, M. A. Mintairov, N. K. Timoshina, and V. M. Andreev, “Current mismatch violation in concentrator multijunction solar cells,” AIP Conf. Proc. 1881, 040006 (2017).
[Crossref]

2016 (3)

K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design,” Renewable Sustainable Energy Rev. 60, 394–407 (2016).
[Crossref]

N. J. Ekins-Daukes, P. Sandwell, J. Nelson, A. D. Johnson, G. Duggan, and E. Herniak, “What does CPV need to achieve in order to succeed?” AIP Conf. Proc. 1766, 020004 (2016).
[Crossref]

N. X. Tien and S. Shin, “A Novel Concentrator Photovoltaic (CPV) System with the Improvement of Irradiance Uniformity and the Capturing of Diffuse Solar Radiation,” Appl. Sci. 6(9), 251 (2016).
[Crossref]

2015 (2)

F. Famoso, R. Lanzafame, S. Maenza, and P. F. Scandura, “Performance comparison between Low Concentration Photovoltaic and Fixed Angle PV Systems,” Energy Procedia 81, 516–525 (2015).
[Crossref]

N. Hayashi, D. Inoue, M. Matsumoto, A. Matsushita, H. Higuchi, Y. Aya, and T. Nakagawa, “High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array,” Opt. Express 23(11), A594–A603 (2015).
[Crossref]

2014 (1)

2011 (1)

D. Ding, S. R. Johnson, S. Q. Yu, and Y. H. Zhang, “A semi-analytical model for semiconductor solar cells,” J. Appl. Phys. 110(12), 123104 (2011).
[Crossref]

1990 (1)

R. A. Sinton and R. M. Swanson, “Simplified backside-contact solar cells,” IEEE Trans. Electron Devices 37(2), 348–352 (1990).
[Crossref]

1989 (1)

R. R. King, R. A. Sinton, and R. M. Swanson, “Doped surfaces in one sun point contact solar cells,” Appl. Phys. Lett. 54(15), 1460–1462 (1989).
[Crossref]

1988 (1)

P. Verlinden, R. A. Sinton, and R. M. Swanson, “High efficiency large area back contact concentrator solar cells with a multilevel interconnection,” Int. J. Sol. Energy 6(6), 347–366 (1988).
[Crossref]

1986 (1)

R. A. Sinton, Y. Kwark, J. Y. Gan, and R. M. Swanson, “27.5-percent silicon concentrator solar cells,” IEEE Electron Device Lett. 7(10), 567–569 (1986).
[Crossref]

Ahaitoufl, A.

S. El Himerl, A. Ahaitoufl, S. El-Yahyaouil, A. Mechaqrane, and A. Ouagazzaden, “A Comparative of Four Secondary Optical Elements for CPV Systems,” AIP Conf. Proc. 2012, 030003 (2018).
[Crossref]

Alamillo, C.

M. Martínez, D. Sánchez, G. Calvo-Parra, C. Alamillo, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “Long-term data analysis/ Feedback from ISFOC CPV plants,” AIP Conf. Proc. 2012, 020008 (2018).
[Crossref]

Alvarez, R.

P. Benitez, J. C. Miñano, and R. Alvarez, “Photovoltaic Concentrator with Auxiliary Cells Collecting Diffuse Radiation,” U.S. Patent 2010/0126556 A1, 27 May 2010.

Andreev, V. M.

M. Z. Shvarts, E. D. Filimonov, S. A. Kozhukhovskaia, M. A. Mintairov, N. K. Timoshina, and V. M. Andreev, “Current mismatch violation in concentrator multijunction solar cells,” AIP Conf. Proc. 1881, 040006 (2017).
[Crossref]

Aya, Y.

Barnett, A.

X. Wang and A. Barnett, “The Evolving Value of Photovoltaic Module Efficiency,” Appl. Sci. 9(6), 1227 (2019).
[Crossref]

Benitez, P.

P. Benitez, J. C. Miñano, and R. Alvarez, “Photovoltaic Concentrator with Auxiliary Cells Collecting Diffuse Radiation,” U.S. Patent 2010/0126556 A1, 27 May 2010.

Blakers, A.

A. Blakers, “Development of the PERC Solar Cell,” IEEE J. Photovoltaics 9(3), 629–635 (2019).
[Crossref]

Borriellol, A.

C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
[Crossref]

Bremner, S.

N. J. Ekins-Daukes, A. Soeriyadi, W. Zhao, S. Bremner, and A. Pusch, “Loss analysis for single junction concentrator solar cells,” AIP Conf. Proc. 2012, 040003 (2018).
[Crossref]

Calvo-Parra, G.

M. Martínez, D. Sánchez, G. Calvo-Parra, C. Alamillo, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “Long-term data analysis/ Feedback from ISFOC CPV plants,” AIP Conf. Proc. 2012, 020008 (2018).
[Crossref]

M. Martínez, D. Sánchez, G. Calvo-Parra, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “8 years of CPV: ISFOC CPV plants, long-term performance analysis and results,” AIP Conf. Proc. 1881, 020007 (2017).
[Crossref]

Cancrol, C.

C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
[Crossref]

Cinigliol, G.

C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
[Crossref]

de Gregorio, F.

M. Martínez, D. Sánchez, G. Calvo-Parra, C. Alamillo, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “Long-term data analysis/ Feedback from ISFOC CPV plants,” AIP Conf. Proc. 2012, 020008 (2018).
[Crossref]

M. Martínez, D. Sánchez, G. Calvo-Parra, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “8 years of CPV: ISFOC CPV plants, long-term performance analysis and results,” AIP Conf. Proc. 1881, 020007 (2017).
[Crossref]

de la Rubia, O.

M. Martínez, D. Sánchez, G. Calvo-Parra, C. Alamillo, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “Long-term data analysis/ Feedback from ISFOC CPV plants,” AIP Conf. Proc. 2012, 020008 (2018).
[Crossref]

M. Martínez, D. Sánchez, G. Calvo-Parra, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “8 years of CPV: ISFOC CPV plants, long-term performance analysis and results,” AIP Conf. Proc. 1881, 020007 (2017).
[Crossref]

Ding, D.

D. Ding, S. R. Johnson, S. Q. Yu, and Y. H. Zhang, “A semi-analytical model for semiconductor solar cells,” J. Appl. Phys. 110(12), 123104 (2011).
[Crossref]

Duggan, G.

N. J. Ekins-Daukes, P. Sandwell, J. Nelson, A. D. Johnson, G. Duggan, and E. Herniak, “What does CPV need to achieve in order to succeed?” AIP Conf. Proc. 1766, 020004 (2016).
[Crossref]

Ekins-Daukes, N. J.

N. J. Ekins-Daukes, A. Soeriyadi, W. Zhao, S. Bremner, and A. Pusch, “Loss analysis for single junction concentrator solar cells,” AIP Conf. Proc. 2012, 040003 (2018).
[Crossref]

N. J. Ekins-Daukes, P. Sandwell, J. Nelson, A. D. Johnson, G. Duggan, and E. Herniak, “What does CPV need to achieve in order to succeed?” AIP Conf. Proc. 1766, 020004 (2016).
[Crossref]

El Himerl, S.

S. El Himerl, A. Ahaitoufl, S. El-Yahyaouil, A. Mechaqrane, and A. Ouagazzaden, “A Comparative of Four Secondary Optical Elements for CPV Systems,” AIP Conf. Proc. 2012, 030003 (2018).
[Crossref]

El-Yahyaouil, S.

S. El Himerl, A. Ahaitoufl, S. El-Yahyaouil, A. Mechaqrane, and A. Ouagazzaden, “A Comparative of Four Secondary Optical Elements for CPV Systems,” AIP Conf. Proc. 2012, 030003 (2018).
[Crossref]

Famoso, F.

F. Famoso, R. Lanzafame, S. Maenza, and P. F. Scandura, “Performance comparison between Low Concentration Photovoltaic and Fixed Angle PV Systems,” Energy Procedia 81, 516–525 (2015).
[Crossref]

Ferlito, S.

C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
[Crossref]

Filimonov, E. D.

M. Z. Shvarts, E. D. Filimonov, S. A. Kozhukhovskaia, M. A. Mintairov, N. K. Timoshina, and V. M. Andreev, “Current mismatch violation in concentrator multijunction solar cells,” AIP Conf. Proc. 1881, 040006 (2017).
[Crossref]

Fuccil, R.

C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
[Crossref]

Gan, J. Y.

R. A. Sinton, Y. Kwark, J. Y. Gan, and R. M. Swanson, “27.5-percent silicon concentrator solar cells,” IEEE Electron Device Lett. 7(10), 567–569 (1986).
[Crossref]

Gil, E.

M. Martínez, D. Sánchez, G. Calvo-Parra, C. Alamillo, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “Long-term data analysis/ Feedback from ISFOC CPV plants,” AIP Conf. Proc. 2012, 020008 (2018).
[Crossref]

M. Martínez, D. Sánchez, G. Calvo-Parra, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “8 years of CPV: ISFOC CPV plants, long-term performance analysis and results,” AIP Conf. Proc. 1881, 020007 (2017).
[Crossref]

Graditi, G.

C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
[Crossref]

Hayashi, N.

Herniak, E.

N. J. Ekins-Daukes, P. Sandwell, J. Nelson, A. D. Johnson, G. Duggan, and E. Herniak, “What does CPV need to achieve in order to succeed?” AIP Conf. Proc. 1766, 020004 (2016).
[Crossref]

Higuchi, H.

Hipólito, Á

M. Martínez, D. Sánchez, G. Calvo-Parra, C. Alamillo, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “Long-term data analysis/ Feedback from ISFOC CPV plants,” AIP Conf. Proc. 2012, 020008 (2018).
[Crossref]

M. Martínez, D. Sánchez, G. Calvo-Parra, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “8 years of CPV: ISFOC CPV plants, long-term performance analysis and results,” AIP Conf. Proc. 1881, 020007 (2017).
[Crossref]

Ijiro, T.

N. Yamada, K. Okamoto, and T. Ijiro, “Feasibility study of harvesting diffuse solar radiation in a high-concentration CPV module for better solar energy conversion,” Proc. 23rd Int’l Photovoltaic Science and Engineering Conf. (PVSEC-23) Taiwan, Oct. 28-Nov 1 2013

Inoue, D.

Jia, B. W.

B. W. Jia, K. H. Tan, W. K. Loke, S. Wicaksono, and S. F. Yoon, “Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer,” J. Cryst. Growth 490(15), 97–103 (2018).
[Crossref]

Johnson, A. D.

N. J. Ekins-Daukes, P. Sandwell, J. Nelson, A. D. Johnson, G. Duggan, and E. Herniak, “What does CPV need to achieve in order to succeed?” AIP Conf. Proc. 1766, 020004 (2016).
[Crossref]

Johnson, S. R.

D. Ding, S. R. Johnson, S. Q. Yu, and Y. H. Zhang, “A semi-analytical model for semiconductor solar cells,” J. Appl. Phys. 110(12), 123104 (2011).
[Crossref]

King, R. R.

R. R. King, R. A. Sinton, and R. M. Swanson, “Doped surfaces in one sun point contact solar cells,” Appl. Phys. Lett. 54(15), 1460–1462 (1989).
[Crossref]

Kitai, A. H.

A. H. Kitai, Principles of Solar Cells, LEDs and Related Devices, Second edition, ISBN: 9781119451020, Wiley, 2018.

Kozhukhovskaia, S. A.

M. Z. Shvarts, E. D. Filimonov, S. A. Kozhukhovskaia, M. A. Mintairov, N. K. Timoshina, and V. M. Andreev, “Current mismatch violation in concentrator multijunction solar cells,” AIP Conf. Proc. 1881, 040006 (2017).
[Crossref]

Kwark, Y.

R. A. Sinton, Y. Kwark, J. Y. Gan, and R. M. Swanson, “27.5-percent silicon concentrator solar cells,” IEEE Electron Device Lett. 7(10), 567–569 (1986).
[Crossref]

Lanzafame, R.

F. Famoso, R. Lanzafame, S. Maenza, and P. F. Scandura, “Performance comparison between Low Concentration Photovoltaic and Fixed Angle PV Systems,” Energy Procedia 81, 516–525 (2015).
[Crossref]

Leanza, G.

C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
[Crossref]

Loke, W. K.

B. W. Jia, K. H. Tan, W. K. Loke, S. Wicaksono, and S. F. Yoon, “Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer,” J. Cryst. Growth 490(15), 97–103 (2018).
[Crossref]

Maenza, S.

F. Famoso, R. Lanzafame, S. Maenza, and P. F. Scandura, “Performance comparison between Low Concentration Photovoltaic and Fixed Angle PV Systems,” Energy Procedia 81, 516–525 (2015).
[Crossref]

Mallick, T. K.

K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design,” Renewable Sustainable Energy Rev. 60, 394–407 (2016).
[Crossref]

Martínez, M.

M. Martínez, D. Sánchez, G. Calvo-Parra, C. Alamillo, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “Long-term data analysis/ Feedback from ISFOC CPV plants,” AIP Conf. Proc. 2012, 020008 (2018).
[Crossref]

M. Martínez, D. Sánchez, G. Calvo-Parra, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “8 years of CPV: ISFOC CPV plants, long-term performance analysis and results,” AIP Conf. Proc. 1881, 020007 (2017).
[Crossref]

Matsumoto, M.

Matsushita, A.

Mechaqrane, A.

S. El Himerl, A. Ahaitoufl, S. El-Yahyaouil, A. Mechaqrane, and A. Ouagazzaden, “A Comparative of Four Secondary Optical Elements for CPV Systems,” AIP Conf. Proc. 2012, 030003 (2018).
[Crossref]

Merola, A.

C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
[Crossref]

Miñano, J. C.

P. Benitez, J. C. Miñano, and R. Alvarez, “Photovoltaic Concentrator with Auxiliary Cells Collecting Diffuse Radiation,” U.S. Patent 2010/0126556 A1, 27 May 2010.

Mintairov, M. A.

M. Z. Shvarts, E. D. Filimonov, S. A. Kozhukhovskaia, M. A. Mintairov, N. K. Timoshina, and V. M. Andreev, “Current mismatch violation in concentrator multijunction solar cells,” AIP Conf. Proc. 1881, 040006 (2017).
[Crossref]

Nakagawa, T.

Nelson, J.

N. J. Ekins-Daukes, P. Sandwell, J. Nelson, A. D. Johnson, G. Duggan, and E. Herniak, “What does CPV need to achieve in order to succeed?” AIP Conf. Proc. 1766, 020004 (2016).
[Crossref]

Okamoto, K.

N. Yamada and K. Okamoto, “Experimental measurements of a prototype high-concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation,” Opt. Express 22(S1), A28–A34 (2014).
[Crossref]

N. Yamada, K. Okamoto, and T. Ijiro, “Feasibility study of harvesting diffuse solar radiation in a high-concentration CPV module for better solar energy conversion,” Proc. 23rd Int’l Photovoltaic Science and Engineering Conf. (PVSEC-23) Taiwan, Oct. 28-Nov 1 2013

Ouagazzaden, A.

S. El Himerl, A. Ahaitoufl, S. El-Yahyaouil, A. Mechaqrane, and A. Ouagazzaden, “A Comparative of Four Secondary Optical Elements for CPV Systems,” AIP Conf. Proc. 2012, 030003 (2018).
[Crossref]

Pascarella, F.

C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
[Crossref]

Pusch, A.

N. J. Ekins-Daukes, A. Soeriyadi, W. Zhao, S. Bremner, and A. Pusch, “Loss analysis for single junction concentrator solar cells,” AIP Conf. Proc. 2012, 040003 (2018).
[Crossref]

Sánchez, D.

M. Martínez, D. Sánchez, G. Calvo-Parra, C. Alamillo, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “Long-term data analysis/ Feedback from ISFOC CPV plants,” AIP Conf. Proc. 2012, 020008 (2018).
[Crossref]

M. Martínez, D. Sánchez, G. Calvo-Parra, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “8 years of CPV: ISFOC CPV plants, long-term performance analysis and results,” AIP Conf. Proc. 1881, 020007 (2017).
[Crossref]

Sandwell, P.

N. J. Ekins-Daukes, P. Sandwell, J. Nelson, A. D. Johnson, G. Duggan, and E. Herniak, “What does CPV need to achieve in order to succeed?” AIP Conf. Proc. 1766, 020004 (2016).
[Crossref]

Scandura, P. F.

F. Famoso, R. Lanzafame, S. Maenza, and P. F. Scandura, “Performance comparison between Low Concentration Photovoltaic and Fixed Angle PV Systems,” Energy Procedia 81, 516–525 (2015).
[Crossref]

Senthilarasu, S.

K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design,” Renewable Sustainable Energy Rev. 60, 394–407 (2016).
[Crossref]

Shanks, K.

K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design,” Renewable Sustainable Energy Rev. 60, 394–407 (2016).
[Crossref]

Shin, S.

N. X. Tien and S. Shin, “A Novel Concentrator Photovoltaic (CPV) System with the Improvement of Irradiance Uniformity and the Capturing of Diffuse Solar Radiation,” Appl. Sci. 6(9), 251 (2016).
[Crossref]

Shvarts, M. Z.

M. Z. Shvarts, E. D. Filimonov, S. A. Kozhukhovskaia, M. A. Mintairov, N. K. Timoshina, and V. M. Andreev, “Current mismatch violation in concentrator multijunction solar cells,” AIP Conf. Proc. 1881, 040006 (2017).
[Crossref]

Sinton, R. A.

R. A. Sinton and R. M. Swanson, “Simplified backside-contact solar cells,” IEEE Trans. Electron Devices 37(2), 348–352 (1990).
[Crossref]

R. R. King, R. A. Sinton, and R. M. Swanson, “Doped surfaces in one sun point contact solar cells,” Appl. Phys. Lett. 54(15), 1460–1462 (1989).
[Crossref]

P. Verlinden, R. A. Sinton, and R. M. Swanson, “High efficiency large area back contact concentrator solar cells with a multilevel interconnection,” Int. J. Sol. Energy 6(6), 347–366 (1988).
[Crossref]

R. A. Sinton, Y. Kwark, J. Y. Gan, and R. M. Swanson, “27.5-percent silicon concentrator solar cells,” IEEE Electron Device Lett. 7(10), 567–569 (1986).
[Crossref]

Soeriyadi, A.

N. J. Ekins-Daukes, A. Soeriyadi, W. Zhao, S. Bremner, and A. Pusch, “Loss analysis for single junction concentrator solar cells,” AIP Conf. Proc. 2012, 040003 (2018).
[Crossref]

Swanson, R. M.

R. A. Sinton and R. M. Swanson, “Simplified backside-contact solar cells,” IEEE Trans. Electron Devices 37(2), 348–352 (1990).
[Crossref]

R. R. King, R. A. Sinton, and R. M. Swanson, “Doped surfaces in one sun point contact solar cells,” Appl. Phys. Lett. 54(15), 1460–1462 (1989).
[Crossref]

P. Verlinden, R. A. Sinton, and R. M. Swanson, “High efficiency large area back contact concentrator solar cells with a multilevel interconnection,” Int. J. Sol. Energy 6(6), 347–366 (1988).
[Crossref]

R. A. Sinton, Y. Kwark, J. Y. Gan, and R. M. Swanson, “27.5-percent silicon concentrator solar cells,” IEEE Electron Device Lett. 7(10), 567–569 (1986).
[Crossref]

Tan, K. H.

B. W. Jia, K. H. Tan, W. K. Loke, S. Wicaksono, and S. F. Yoon, “Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer,” J. Cryst. Growth 490(15), 97–103 (2018).
[Crossref]

Tien, N. X.

N. X. Tien and S. Shin, “A Novel Concentrator Photovoltaic (CPV) System with the Improvement of Irradiance Uniformity and the Capturing of Diffuse Solar Radiation,” Appl. Sci. 6(9), 251 (2016).
[Crossref]

Timoshina, N. K.

M. Z. Shvarts, E. D. Filimonov, S. A. Kozhukhovskaia, M. A. Mintairov, N. K. Timoshina, and V. M. Andreev, “Current mismatch violation in concentrator multijunction solar cells,” AIP Conf. Proc. 1881, 040006 (2017).
[Crossref]

Verlinden, P.

P. Verlinden, R. A. Sinton, and R. M. Swanson, “High efficiency large area back contact concentrator solar cells with a multilevel interconnection,” Int. J. Sol. Energy 6(6), 347–366 (1988).
[Crossref]

Wang, X.

X. Wang and A. Barnett, “The Evolving Value of Photovoltaic Module Efficiency,” Appl. Sci. 9(6), 1227 (2019).
[Crossref]

Wicaksono, S.

B. W. Jia, K. H. Tan, W. K. Loke, S. Wicaksono, and S. F. Yoon, “Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer,” J. Cryst. Growth 490(15), 97–103 (2018).
[Crossref]

Yamada, N.

N. Yamada and K. Okamoto, “Experimental measurements of a prototype high-concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation,” Opt. Express 22(S1), A28–A34 (2014).
[Crossref]

N. Yamada, K. Okamoto, and T. Ijiro, “Feasibility study of harvesting diffuse solar radiation in a high-concentration CPV module for better solar energy conversion,” Proc. 23rd Int’l Photovoltaic Science and Engineering Conf. (PVSEC-23) Taiwan, Oct. 28-Nov 1 2013

Yoon, S. F.

B. W. Jia, K. H. Tan, W. K. Loke, S. Wicaksono, and S. F. Yoon, “Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer,” J. Cryst. Growth 490(15), 97–103 (2018).
[Crossref]

Yu, S. Q.

D. Ding, S. R. Johnson, S. Q. Yu, and Y. H. Zhang, “A semi-analytical model for semiconductor solar cells,” J. Appl. Phys. 110(12), 123104 (2011).
[Crossref]

Zhang, Y. H.

D. Ding, S. R. Johnson, S. Q. Yu, and Y. H. Zhang, “A semi-analytical model for semiconductor solar cells,” J. Appl. Phys. 110(12), 123104 (2011).
[Crossref]

Zhao, W.

N. J. Ekins-Daukes, A. Soeriyadi, W. Zhao, S. Bremner, and A. Pusch, “Loss analysis for single junction concentrator solar cells,” AIP Conf. Proc. 2012, 040003 (2018).
[Crossref]

AIP Conf. Proc. (7)

C. Cancrol, A. Borriellol, G. Cinigliol, S. Ferlito, R. Fuccil, G. Graditi, G. Leanza, A. Merola, and F. Pascarella, “Analysis of Ecosole HCPV System Performances During Two Operation Years,” AIP Conf. Proc. 2012, 020003 (2018).
[Crossref]

M. Martínez, D. Sánchez, G. Calvo-Parra, C. Alamillo, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “Long-term data analysis/ Feedback from ISFOC CPV plants,” AIP Conf. Proc. 2012, 020008 (2018).
[Crossref]

M. Martínez, D. Sánchez, G. Calvo-Parra, E. Gil, Á Hipólito, F. de Gregorio, and O. de la Rubia, “8 years of CPV: ISFOC CPV plants, long-term performance analysis and results,” AIP Conf. Proc. 1881, 020007 (2017).
[Crossref]

M. Z. Shvarts, E. D. Filimonov, S. A. Kozhukhovskaia, M. A. Mintairov, N. K. Timoshina, and V. M. Andreev, “Current mismatch violation in concentrator multijunction solar cells,” AIP Conf. Proc. 1881, 040006 (2017).
[Crossref]

S. El Himerl, A. Ahaitoufl, S. El-Yahyaouil, A. Mechaqrane, and A. Ouagazzaden, “A Comparative of Four Secondary Optical Elements for CPV Systems,” AIP Conf. Proc. 2012, 030003 (2018).
[Crossref]

N. J. Ekins-Daukes, P. Sandwell, J. Nelson, A. D. Johnson, G. Duggan, and E. Herniak, “What does CPV need to achieve in order to succeed?” AIP Conf. Proc. 1766, 020004 (2016).
[Crossref]

N. J. Ekins-Daukes, A. Soeriyadi, W. Zhao, S. Bremner, and A. Pusch, “Loss analysis for single junction concentrator solar cells,” AIP Conf. Proc. 2012, 040003 (2018).
[Crossref]

Appl. Phys. Lett. (1)

R. R. King, R. A. Sinton, and R. M. Swanson, “Doped surfaces in one sun point contact solar cells,” Appl. Phys. Lett. 54(15), 1460–1462 (1989).
[Crossref]

Appl. Sci. (2)

X. Wang and A. Barnett, “The Evolving Value of Photovoltaic Module Efficiency,” Appl. Sci. 9(6), 1227 (2019).
[Crossref]

N. X. Tien and S. Shin, “A Novel Concentrator Photovoltaic (CPV) System with the Improvement of Irradiance Uniformity and the Capturing of Diffuse Solar Radiation,” Appl. Sci. 6(9), 251 (2016).
[Crossref]

Energy Procedia (1)

F. Famoso, R. Lanzafame, S. Maenza, and P. F. Scandura, “Performance comparison between Low Concentration Photovoltaic and Fixed Angle PV Systems,” Energy Procedia 81, 516–525 (2015).
[Crossref]

IEEE Electron Device Lett. (1)

R. A. Sinton, Y. Kwark, J. Y. Gan, and R. M. Swanson, “27.5-percent silicon concentrator solar cells,” IEEE Electron Device Lett. 7(10), 567–569 (1986).
[Crossref]

IEEE J. Photovoltaics (1)

A. Blakers, “Development of the PERC Solar Cell,” IEEE J. Photovoltaics 9(3), 629–635 (2019).
[Crossref]

IEEE Trans. Electron Devices (1)

R. A. Sinton and R. M. Swanson, “Simplified backside-contact solar cells,” IEEE Trans. Electron Devices 37(2), 348–352 (1990).
[Crossref]

Int. J. Sol. Energy (1)

P. Verlinden, R. A. Sinton, and R. M. Swanson, “High efficiency large area back contact concentrator solar cells with a multilevel interconnection,” Int. J. Sol. Energy 6(6), 347–366 (1988).
[Crossref]

J. Appl. Phys. (1)

D. Ding, S. R. Johnson, S. Q. Yu, and Y. H. Zhang, “A semi-analytical model for semiconductor solar cells,” J. Appl. Phys. 110(12), 123104 (2011).
[Crossref]

J. Cryst. Growth (1)

B. W. Jia, K. H. Tan, W. K. Loke, S. Wicaksono, and S. F. Yoon, “Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer,” J. Cryst. Growth 490(15), 97–103 (2018).
[Crossref]

Opt. Express (2)

Renewable Sustainable Energy Rev. (1)

K. Shanks, S. Senthilarasu, and T. K. Mallick, “Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design,” Renewable Sustainable Energy Rev. 60, 394–407 (2016).
[Crossref]

Other (4)

A. H. Kitai, Principles of Solar Cells, LEDs and Related Devices, Second edition, ISBN: 9781119451020, Wiley, 2018.

NREL “Best Solar Cell Efficiencies” https://www.nrel.gov/pv/cell-efficiency.html

P. Benitez, J. C. Miñano, and R. Alvarez, “Photovoltaic Concentrator with Auxiliary Cells Collecting Diffuse Radiation,” U.S. Patent 2010/0126556 A1, 27 May 2010.

N. Yamada, K. Okamoto, and T. Ijiro, “Feasibility study of harvesting diffuse solar radiation in a high-concentration CPV module for better solar energy conversion,” Proc. 23rd Int’l Photovoltaic Science and Engineering Conf. (PVSEC-23) Taiwan, Oct. 28-Nov 1 2013

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. a) CPV makes use of optical focussing, small solar cells and a tracking system. b) ACCPV also makes use of optical focussing but does not require tracking. A single solar cell having adaptive contacts is shown. Since the total solar power reaching the solar cell has not increased, a heat spreader equal in size to cell area is sufficient to prevent the illuminated regions of the solar cell from excessive temperature increases.
Fig. 2.
Fig. 2. Basic ACCPV system showing segmented rear electrode connected to individual switches. a) and b) Switches are set such that only those portions of the solar cell producing power are connected and portions of the solar cell that dissipate power are not connected. c) Smaller cell segments allow more refined selection of the connected versus disconnected cell areas. The result is a pixelated solar cell. A conceptual rendering of cell segments or “pixels” illuminated by one lens at one instant in time is shown. Cell segments inside the circle would be connected and those outside the circle would be disconnected.
Fig. 3.
Fig. 3. Plot of $\Delta {V_{\textrm{OC}}}$ as a function of the ratio of dark cell area ${A_2}$ to illuminated cell area ${A_1}$ for a parallel connection.
Fig. 4.
Fig. 4. I-V Characteristics of a pair of Sunpower solar cells connected according to Table 1.
Fig. 5.
Fig. 5. I-V Characteristics of a pair of China SunEnergy solar cells connected according to Table 1.
Fig. 6.
Fig. 6. Cross section of a single junction n+p solar cell showing crosstalk between segments $N$ and $N + 1$ due to minority and majority currents in the p-region. The concept of a narrow electrically insulating barrier along the dotted line is also shown.
Fig. 7.
Fig. 7. Cross section of typical n+p solar cell showing a photoconductive layer behind the solar cell. Infrared sunlight that is not absorbed by the solar cell is used to generate electron-hole pairs in this photoconductive layer in order to control carrier flow to the rear electrode in a spatially selective manner.
Fig. 8.
Fig. 8. ACCPV as applied to multijunction solar cell. In this example three cells are shown. As in Fig. 7, lateral barriers are needed to prevent unwanted lateral current flow. Tunnel junctions exist between stacked cells.
Fig. 9.
Fig. 9. One illuminated cell and one dark cell are connected in parallel. In the absence of a load, voltage ${V_{\textrm{OC}}}$ will be produced when their currents are equal in magnitude and opposite in direction.

Tables (1)

Tables Icon

Table 1. Configurations of two nominally identical silicon solar cells.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ V OC ln k T q ( A 1 + A 2 A 1 )
Δ V OC k T q ln 2 = 0.018 V
I = I 0 ( exp q V k T 1 ) I SC
V OC = k T q ln ( I SC I 0 + 1 )
V OC = k T q ln ( q γ Φ J 0 A total + 1 )
J 0 A 1 ( exp q V OC k T 1 ) q γ Φ = J 0 A 2 ( exp q V OC k T 1 )
J 0 ( A 1 + A 2 ) ( exp q V OC k T 1 ) = q γ Φ
V OC = k T q ln ( q γ ϕ J 0 ( A 1 + A 2 ) + 1 ) = k T q ln ( q γ ϕ J 0 A total + 1 )
I = I 0 ( exp q V k T 1 ) I SC = J 0 A 1 ( exp q V k T 1 ) q γ Φ
V OC (single cell) = k T q ln ( q γ Φ J 0 A 1 + 1 )
V OC (single cell) V OC = k T q ln ( q γ ϕ J 0 A 1 + 1 ) k T q ln ( q γ ϕ J 0 ( A 1 + A 2 ) + 1 )
V OC (single cell) V OC k T q ln ( q γ ϕ J 0 A 1 ) k T q ln ( q γ ϕ J 0 ( A 1 + A 2 ) )
V OC (single cell) V OC k T q ln ( A 1 + A 2 A 1 )
Δ V OC = V OC (single cell) V OC k T q ln 2 = 0.018 V

Metrics