Abstract

Vortex lasers are an attractive prospect for efficient generation of high-quality beams in compact, environmentally robust, and turnkey systems. We demonstrate conversion of a Q-switched, diode-pumped Nd:YVO4, TEM00 Gaussian laser into a vortex laser source by replacing the output coupling mirror by a vortex output coupler (VOC) based on an imbalanced Sagnac interferometer. The Q-switched VOC laser generated a vortex output with 5.1 W average power, slope efficiency of 46% at 150 kHz pulse repetition rate, only marginally lower than the 5.4W and 49% slope efficiency of the plane mirror laser. Vortex handedness was switchable with a single VOC control without loss of vortex power. In both handedness cases, the vortex mode quality was assessed to be excellent by detailed analysis of the vortex phase profile and propagation characteristics and comparison to an ideal vortex. Further investigation verified the ability for the VOC laser to self-mode-filter the intracavity mode, showing maintenance of high TEM00 quality even after introducing deliberate mode to pump size mismatch, when the equivalent plane mirror laser becomes multimode. This work highlights the potential of the VOC as a simple route to high powered structured light sources using just standard high-power handling mirror components and its self-mode-filtering property to compensate intra-cavity spatial mode degradation when power-scaling.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Vortex laser by transforming Gaussian mode with an interferometric output coupler

W. R. Kerridge-Johns, J. W. T. Geberbauer, and M. J. Damzen
Opt. Express 27(8) 11642-11650 (2019)

Q-switched Nd:YAG optical vortex lasers

D. J. Kim, J. W. Kim, and W. A. Clarkson
Opt. Express 21(24) 29449-29454 (2013)

Self-Q-switched Cr:LiCAF laser

Ersen Beyatli, Alphan Sennaroglu, and Umit Demirbas
J. Opt. Soc. Am. B 30(4) 914-921 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  2. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
    [Crossref]
  3. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  4. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
    [Crossref]
  5. M. Massari, G. Ruffato, M. Gintoli, F. Ricci, and F. Romanato, “Fabrication and characterization of high-quality spiral phase plates for optical applications,” Appl. Opt. 54(13), 4077 (2015).
    [Crossref]
  6. L. Marrucci, “Generation of Helical Modes of Light by Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Liquid Crystals,” Mol. Cryst. Liq. Cryst. 488(1), 148–162 (2008).
    [Crossref]
  7. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
    [Crossref]
  8. N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221 (1992).
    [Crossref]
  9. N. Radwell, R. D. Hawley, J. B. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7(1), 10564 (2016).
    [Crossref]
  10. S. Carbajo Garcia and K. Bauchert, “Power handling for LCoS spatial light modulators,” in Laser Resonators, Microresonators, and Beam Control XX, A. V. Kudryashov, A. H. Paxton, and V. S. Ilchenko, eds. (SPIE, 2018), p. 64.
  11. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144 (2010).
    [Crossref]
  12. K. Furuki, M.-T. Horikawa, A. Ogawa, K. Miyamoto, and T. Omatsu, “Tunable mid-infrared (63–12 µm)optical vortex pulse generation,” Opt. Express 22(21), 26351 (2014).
    [Crossref]
  13. X. Chen, C. Chang, Z. Lin, P. Ding, and J. Pu, “High-Energy Nanosecond Optical Vortex Output From Nd:YAG Amplifiers,” IEEE Photonics Technol. Lett. 28(12), 1271–1274 (2016).
    [Crossref]
  14. K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
    [Crossref]
  15. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
    [Crossref]
  16. D. Lin, J. M. O. Daniel, and W. A. Clarkson, “Controlling the handedness of directly excited Laguerre Gaussian modes in a solid-state laser,” 2013 Conf. Lasers Electro-Optics Eur. Int. Quantum Electron. Conf. CLEO/Europe-IQEC 2013 39, 3903–3906 (2013).
  17. W. R. Kerridge-Johns and M. J. Damzen, “Vortex laser from anti-resonant ring coupled cavities,” Opt. Express 26(25), 32839 (2018).
    [Crossref]
  18. M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 µm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
    [Crossref]
  19. G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15(4), 045804 (2018).
    [Crossref]
  20. D. J. Kim, J. W. Kim, and W. A. Clarkson, “Q-switched Nd:YAG optical vortex lasers,” Opt. Express 21(24), 29449 (2013).
    [Crossref]
  21. Y. Chen, M. Ding, J. Wang, Y. Zhao, and D. Shen, “Direct generation of pulsed vortex beam from a Tm:LuYAG laser at 2018nm,” in Laser Congress 2019 (ASSL, LAC, LS&C) (OSA, 2019), p. JTu3A.11.
  22. Y. Zhao, Q. Liu, W. Zhou, and D. Shen, “∼1 mJ pulsed vortex laser at 1645 nm with well-defined helicity,” Opt. Express 24(14), 15596 (2016).
    [Crossref]
  23. Q. Liu, Y. Zhao, W. Zhou, and D. Shen, “Vortex operation in Er:LuYAG crystal laser at ∼1.6 µm,” Opt. Mater. 71, 31–34 (2017).
    [Crossref]
  24. S. Wang, Z. Zhao, I. Ito, and Y. Kobayashi, “Direct generation of femtosecond vortex beam from a Yb:KYW oscillator featuring a defect-spot mirror,” OSA Continuum 2(3), 523 (2019).
    [Crossref]
  25. D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse – An achromatic-interferometric approach,” Sci. Rep. 7(1), 2395 (2017).
    [Crossref]
  26. W. R. Kerridge-Johns, J. W. T. Geberbauer, and M. J. Damzen, “Vortex laser by transforming Gaussian mode with an interferometric output coupler,” Opt. Express 27(8), 11642 (2019).
    [Crossref]
  27. P. Vaity, A. Aadhi, and R. P. Singh, “Formation of optical vortices through superposition of two Gaussian beams,” Appl. Opt. 52(27), 6652 (2013).
    [Crossref]
  28. S. C. Kumar, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Interferometric output coupling of ring optical oscillators,” Opt. Lett. 36(7), 1068 (2011).
    [Crossref]
  29. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156 (1982).
    [Crossref]
  30. M. J. Damzen, W. R. Kerridge-Johns, and J. W. T. Geberbauer, “Vortex mode transformation interferometry,” J. Opt. 22(1), 015604 (2020).
    [Crossref]
  31. U. K. F. Saltarelli, I. J. Graumann, L. Lang, D. Bauer, and C. R. Phillips, “350-W Average-Power SESAM-Modelocked Ultrafast Thin -Disk Laser,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2019), p. paper cf_1_1.
  32. S.-S. Schad, C. Stolzenburg, K. Michel, and D. Sutter, “Latest Advances in High Brightness Disk Lasers,” Laser Tech. J. 11(2), 49–53 (2014).
    [Crossref]

2020 (1)

M. J. Damzen, W. R. Kerridge-Johns, and J. W. T. Geberbauer, “Vortex mode transformation interferometry,” J. Opt. 22(1), 015604 (2020).
[Crossref]

2019 (2)

2018 (2)

G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15(4), 045804 (2018).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Vortex laser from anti-resonant ring coupled cavities,” Opt. Express 26(25), 32839 (2018).
[Crossref]

2017 (2)

Q. Liu, Y. Zhao, W. Zhou, and D. Shen, “Vortex operation in Er:LuYAG crystal laser at ∼1.6 µm,” Opt. Mater. 71, 31–34 (2017).
[Crossref]

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse – An achromatic-interferometric approach,” Sci. Rep. 7(1), 2395 (2017).
[Crossref]

2016 (4)

Y. Zhao, Q. Liu, W. Zhou, and D. Shen, “∼1 mJ pulsed vortex laser at 1645 nm with well-defined helicity,” Opt. Express 24(14), 15596 (2016).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

N. Radwell, R. D. Hawley, J. B. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7(1), 10564 (2016).
[Crossref]

X. Chen, C. Chang, Z. Lin, P. Ding, and J. Pu, “High-Energy Nanosecond Optical Vortex Output From Nd:YAG Amplifiers,” IEEE Photonics Technol. Lett. 28(12), 1271–1274 (2016).
[Crossref]

2015 (1)

2014 (2)

K. Furuki, M.-T. Horikawa, A. Ogawa, K. Miyamoto, and T. Omatsu, “Tunable mid-infrared (63–12 µm)optical vortex pulse generation,” Opt. Express 22(21), 26351 (2014).
[Crossref]

S.-S. Schad, C. Stolzenburg, K. Michel, and D. Sutter, “Latest Advances in High Brightness Disk Lasers,” Laser Tech. J. 11(2), 49–53 (2014).
[Crossref]

2013 (2)

2012 (3)

K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 µm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

2008 (1)

L. Marrucci, “Generation of Helical Modes of Light by Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Liquid Crystals,” Mol. Cryst. Liq. Cryst. 488(1), 148–162 (2008).
[Crossref]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref]

1993 (1)

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

1992 (2)

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221 (1992).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

1982 (1)

Aadhi, A.

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Allen, L.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Bauchert, K.

S. Carbajo Garcia and K. Bauchert, “Power handling for LCoS spatial light modulators,” in Laser Resonators, Microresonators, and Beam Control XX, A. V. Kudryashov, A. H. Paxton, and V. S. Ilchenko, eds. (SPIE, 2018), p. 64.

Bauer, D.

U. K. F. Saltarelli, I. J. Graumann, L. Lang, D. Bauer, and C. R. Phillips, “350-W Average-Power SESAM-Modelocked Ultrafast Thin -Disk Laser,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2019), p. paper cf_1_1.

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Carbajo Garcia, S.

S. Carbajo Garcia and K. Bauchert, “Power handling for LCoS spatial light modulators,” in Laser Resonators, Microresonators, and Beam Control XX, A. V. Kudryashov, A. H. Paxton, and V. S. Ilchenko, eds. (SPIE, 2018), p. 64.

Chang, C.

X. Chen, C. Chang, Z. Lin, P. Ding, and J. Pu, “High-Energy Nanosecond Optical Vortex Output From Nd:YAG Amplifiers,” IEEE Photonics Technol. Lett. 28(12), 1271–1274 (2016).
[Crossref]

Chen, X.

X. Chen, C. Chang, Z. Lin, P. Ding, and J. Pu, “High-Energy Nanosecond Optical Vortex Output From Nd:YAG Amplifiers,” IEEE Photonics Technol. Lett. 28(12), 1271–1274 (2016).
[Crossref]

Chen, Y.

Y. Chen, M. Ding, J. Wang, Y. Zhao, and D. Shen, “Direct generation of pulsed vortex beam from a Tm:LuYAG laser at 2018nm,” in Laser Congress 2019 (ASSL, LAC, LS&C) (OSA, 2019), p. JTu3A.11.

Chujo, K.

Clarkson, W. A.

D. J. Kim, J. W. Kim, and W. A. Clarkson, “Q-switched Nd:YAG optical vortex lasers,” Opt. Express 21(24), 29449 (2013).
[Crossref]

D. Lin, J. M. O. Daniel, and W. A. Clarkson, “Controlling the handedness of directly excited Laguerre Gaussian modes in a solid-state laser,” 2013 Conf. Lasers Electro-Optics Eur. Int. Quantum Electron. Conf. CLEO/Europe-IQEC 2013 39, 3903–3906 (2013).

Damzen, M. J.

M. J. Damzen, W. R. Kerridge-Johns, and J. W. T. Geberbauer, “Vortex mode transformation interferometry,” J. Opt. 22(1), 015604 (2020).
[Crossref]

W. R. Kerridge-Johns, J. W. T. Geberbauer, and M. J. Damzen, “Vortex laser by transforming Gaussian mode with an interferometric output coupler,” Opt. Express 27(8), 11642 (2019).
[Crossref]

G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15(4), 045804 (2018).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Vortex laser from anti-resonant ring coupled cavities,” Opt. Express 26(25), 32839 (2018).
[Crossref]

Daniel, J. M. O.

D. Lin, J. M. O. Daniel, and W. A. Clarkson, “Controlling the handedness of directly excited Laguerre Gaussian modes in a solid-state laser,” 2013 Conf. Lasers Electro-Optics Eur. Int. Quantum Electron. Conf. CLEO/Europe-IQEC 2013 39, 3903–3906 (2013).

Ding, M.

Y. Chen, M. Ding, J. Wang, Y. Zhao, and D. Shen, “Direct generation of pulsed vortex beam from a Tm:LuYAG laser at 2018nm,” in Laser Congress 2019 (ASSL, LAC, LS&C) (OSA, 2019), p. JTu3A.11.

Ding, P.

X. Chen, C. Chang, Z. Lin, P. Ding, and J. Pu, “High-Energy Nanosecond Optical Vortex Output From Nd:YAG Amplifiers,” IEEE Photonics Technol. Lett. 28(12), 1271–1274 (2016).
[Crossref]

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dudley, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Ebrahim-Zadeh, M.

Esteban-Martin, A.

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Forbes, A.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Franke-Arnold, S.

N. Radwell, R. D. Hawley, J. B. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7(1), 10564 (2016).
[Crossref]

Friese, M. E. J.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref]

Furuki, K.

Geberbauer, J. W. T.

M. J. Damzen, W. R. Kerridge-Johns, and J. W. T. Geberbauer, “Vortex mode transformation interferometry,” J. Opt. 22(1), 015604 (2020).
[Crossref]

W. R. Kerridge-Johns, J. W. T. Geberbauer, and M. J. Damzen, “Vortex laser by transforming Gaussian mode with an interferometric output coupler,” Opt. Express 27(8), 11642 (2019).
[Crossref]

Gintoli, M.

Götte, J. B.

N. Radwell, R. D. Hawley, J. B. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7(1), 10564 (2016).
[Crossref]

Graumann, I. J.

U. K. F. Saltarelli, I. J. Graumann, L. Lang, D. Bauer, and C. R. Phillips, “350-W Average-Power SESAM-Modelocked Ultrafast Thin -Disk Laser,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2019), p. paper cf_1_1.

Hamazaki, J.

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144 (2010).
[Crossref]

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 µm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

Hawley, R. D.

N. Radwell, R. D. Hawley, J. B. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7(1), 10564 (2016).
[Crossref]

Hayashi, Y.

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 µm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref]

Heckenberg, N. R.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref]

N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White, “Generation of optical phase singularities by computer-generated holograms,” Opt. Lett. 17(3), 221 (1992).
[Crossref]

Horikawa, M.-T.

Huang, H.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ina, H.

Ito, I.

Kano, K.

K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
[Crossref]

Kerridge-Johns, W. R.

Kim, D. J.

Kim, J. W.

Kobayashi, S.

Kobayashi, Y.

Kozawa, Y.

K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
[Crossref]

Kumar, S. C.

Lang, L.

U. K. F. Saltarelli, I. J. Graumann, L. Lang, D. Bauer, and C. R. Phillips, “350-W Average-Power SESAM-Modelocked Ultrafast Thin -Disk Laser,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2019), p. paper cf_1_1.

Lin, D.

D. Lin, J. M. O. Daniel, and W. A. Clarkson, “Controlling the handedness of directly excited Laguerre Gaussian modes in a solid-state laser,” 2013 Conf. Lasers Electro-Optics Eur. Int. Quantum Electron. Conf. CLEO/Europe-IQEC 2013 39, 3903–3906 (2013).

Lin, Z.

X. Chen, C. Chang, Z. Lin, P. Ding, and J. Pu, “High-Energy Nanosecond Optical Vortex Output From Nd:YAG Amplifiers,” IEEE Photonics Technol. Lett. 28(12), 1271–1274 (2016).
[Crossref]

Litvin, I.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Liu, Q.

Q. Liu, Y. Zhao, W. Zhou, and D. Shen, “Vortex operation in Er:LuYAG crystal laser at ∼1.6 µm,” Opt. Mater. 71, 31–34 (2017).
[Crossref]

Y. Zhao, Q. Liu, W. Zhou, and D. Shen, “∼1 mJ pulsed vortex laser at 1645 nm with well-defined helicity,” Opt. Express 24(14), 15596 (2016).
[Crossref]

Marrucci, L.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

L. Marrucci, “Generation of Helical Modes of Light by Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Liquid Crystals,” Mol. Cryst. Liq. Cryst. 488(1), 148–162 (2008).
[Crossref]

Massari, M.

McDuff, R.

Michel, K.

S.-S. Schad, C. Stolzenburg, K. Michel, and D. Sutter, “Latest Advances in High Brightness Disk Lasers,” Laser Tech. J. 11(2), 49–53 (2014).
[Crossref]

Minassian, A.

G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15(4), 045804 (2018).
[Crossref]

Miyamoto, K.

K. Furuki, M.-T. Horikawa, A. Ogawa, K. Miyamoto, and T. Omatsu, “Tunable mid-infrared (63–12 µm)optical vortex pulse generation,” Opt. Express 22(21), 26351 (2014).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Morita, R.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144 (2010).
[Crossref]

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 µm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

Naidoo, D.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Naik, D. N.

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse – An achromatic-interferometric approach,” Sci. Rep. 7(1), 2395 (2017).
[Crossref]

Ogawa, A.

Okida, M.

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 µm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

Omatsu, T.

K. Furuki, M.-T. Horikawa, A. Ogawa, K. Miyamoto, and T. Omatsu, “Tunable mid-infrared (63–12 µm)optical vortex pulse generation,” Opt. Express 22(21), 26351 (2014).
[Crossref]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144 (2010).
[Crossref]

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 µm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

Phillips, C. R.

U. K. F. Saltarelli, I. J. Graumann, L. Lang, D. Bauer, and C. R. Phillips, “350-W Average-Power SESAM-Modelocked Ultrafast Thin -Disk Laser,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2019), p. paper cf_1_1.

Piccirillo, B.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Pu, J.

X. Chen, C. Chang, Z. Lin, P. Ding, and J. Pu, “High-Energy Nanosecond Optical Vortex Output From Nd:YAG Amplifiers,” IEEE Photonics Technol. Lett. 28(12), 1271–1274 (2016).
[Crossref]

Radwell, N.

N. Radwell, R. D. Hawley, J. B. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7(1), 10564 (2016).
[Crossref]

Rao, D. N.

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse – An achromatic-interferometric approach,” Sci. Rep. 7(1), 2395 (2017).
[Crossref]

Ren, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ricci, F.

Romanato, F.

Roux, F. S.

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Rubinsztein-Dunlop, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref]

Ruffato, G.

Saad, N. A.

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse – An achromatic-interferometric approach,” Sci. Rep. 7(1), 2395 (2017).
[Crossref]

Saltarelli, U. K. F.

U. K. F. Saltarelli, I. J. Graumann, L. Lang, D. Bauer, and C. R. Phillips, “350-W Average-Power SESAM-Modelocked Ultrafast Thin -Disk Laser,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2019), p. paper cf_1_1.

Sato, S.

K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
[Crossref]

Schad, S.-S.

S.-S. Schad, C. Stolzenburg, K. Michel, and D. Sutter, “Latest Advances in High Brightness Disk Lasers,” Laser Tech. J. 11(2), 49–53 (2014).
[Crossref]

Shen, D.

Q. Liu, Y. Zhao, W. Zhou, and D. Shen, “Vortex operation in Er:LuYAG crystal laser at ∼1.6 µm,” Opt. Mater. 71, 31–34 (2017).
[Crossref]

Y. Zhao, Q. Liu, W. Zhou, and D. Shen, “∼1 mJ pulsed vortex laser at 1645 nm with well-defined helicity,” Opt. Express 24(14), 15596 (2016).
[Crossref]

Y. Chen, M. Ding, J. Wang, Y. Zhao, and D. Shen, “Direct generation of pulsed vortex beam from a Tm:LuYAG laser at 2018nm,” in Laser Congress 2019 (ASSL, LAC, LS&C) (OSA, 2019), p. JTu3A.11.

Singh, R. P.

Smith, C. P.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Stolzenburg, C.

S.-S. Schad, C. Stolzenburg, K. Michel, and D. Sutter, “Latest Advances in High Brightness Disk Lasers,” Laser Tech. J. 11(2), 49–53 (2014).
[Crossref]

Sutter, D.

S.-S. Schad, C. Stolzenburg, K. Michel, and D. Sutter, “Latest Advances in High Brightness Disk Lasers,” Laser Tech. J. 11(2), 49–53 (2014).
[Crossref]

Takeda, M.

Tanda, S.

Thomas, G. M.

G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15(4), 045804 (2018).
[Crossref]

Toyoda, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Tur, M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Vaity, P.

van der Veen, H. E. L. O.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Viswanathan, N. K.

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse – An achromatic-interferometric approach,” Sci. Rep. 7(1), 2395 (2017).
[Crossref]

Wang, J.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Y. Chen, M. Ding, J. Wang, Y. Zhao, and D. Shen, “Direct generation of pulsed vortex beam from a Tm:LuYAG laser at 2018nm,” in Laser Congress 2019 (ASSL, LAC, LS&C) (OSA, 2019), p. JTu3A.11.

Wang, S.

White, A. G.

Willner, A. E.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J. P.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yue, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhao, Y.

Q. Liu, Y. Zhao, W. Zhou, and D. Shen, “Vortex operation in Er:LuYAG crystal laser at ∼1.6 µm,” Opt. Mater. 71, 31–34 (2017).
[Crossref]

Y. Zhao, Q. Liu, W. Zhou, and D. Shen, “∼1 mJ pulsed vortex laser at 1645 nm with well-defined helicity,” Opt. Express 24(14), 15596 (2016).
[Crossref]

Y. Chen, M. Ding, J. Wang, Y. Zhao, and D. Shen, “Direct generation of pulsed vortex beam from a Tm:LuYAG laser at 2018nm,” in Laser Congress 2019 (ASSL, LAC, LS&C) (OSA, 2019), p. JTu3A.11.

Zhao, Z.

Zhou, W.

Q. Liu, Y. Zhao, W. Zhou, and D. Shen, “Vortex operation in Er:LuYAG crystal laser at ∼1.6 µm,” Opt. Mater. 71, 31–34 (2017).
[Crossref]

Y. Zhao, Q. Liu, W. Zhou, and D. Shen, “∼1 mJ pulsed vortex laser at 1645 nm with well-defined helicity,” Opt. Express 24(14), 15596 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

M. Okida, Y. Hayashi, T. Omatsu, J. Hamazaki, and R. Morita, “Characterization of 1.06 µm optical vortex laser based on a side-pumped Nd:GdVO4 bounce oscillator,” Appl. Phys. B 95(1), 69–73 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

X. Chen, C. Chang, Z. Lin, P. Ding, and J. Pu, “High-Energy Nanosecond Optical Vortex Output From Nd:YAG Amplifiers,” IEEE Photonics Technol. Lett. 28(12), 1271–1274 (2016).
[Crossref]

Int. J. Opt. (1)

K. Kano, Y. Kozawa, and S. Sato, “Generation of a Purely Single Transverse Mode Vortex Beam from a He-Ne Laser Cavity with a Spot-Defect Mirror,” Int. J. Opt. 2012, 1–6 (2012).
[Crossref]

J. Opt. (1)

M. J. Damzen, W. R. Kerridge-Johns, and J. W. T. Geberbauer, “Vortex mode transformation interferometry,” J. Opt. 22(1), 015604 (2020).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Phys. Lett. (1)

G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15(4), 045804 (2018).
[Crossref]

Laser Tech. J. (1)

S.-S. Schad, C. Stolzenburg, K. Michel, and D. Sutter, “Latest Advances in High Brightness Disk Lasers,” Laser Tech. J. 11(2), 49–53 (2014).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

L. Marrucci, “Generation of Helical Modes of Light by Spin-to-Orbital Angular Momentum Conversion in Inhomogeneous Liquid Crystals,” Mol. Cryst. Liq. Cryst. 488(1), 148–162 (2008).
[Crossref]

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref]

Nat. Commun. (1)

N. Radwell, R. D. Hawley, J. B. Götte, and S. Franke-Arnold, “Achromatic vector vortex beams from a glass cone,” Nat. Commun. 7(1), 10564 (2016).
[Crossref]

Nat. Photonics (2)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, “Controlled generation of higher-order Poincaré sphere beams from a laser,” Nat. Photonics 10(5), 327–332 (2016).
[Crossref]

Opt. Commun. (1)

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Opt. Mater. (1)

Q. Liu, Y. Zhao, W. Zhou, and D. Shen, “Vortex operation in Er:LuYAG crystal laser at ∼1.6 µm,” Opt. Mater. 71, 31–34 (2017).
[Crossref]

OSA Continuum (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Phys. Rev. Lett. (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity,” Phys. Rev. Lett. 75(5), 826–829 (1995).
[Crossref]

Sci. Rep. (1)

D. N. Naik, N. A. Saad, D. N. Rao, and N. K. Viswanathan, “Ultrashort vortex from a Gaussian pulse – An achromatic-interferometric approach,” Sci. Rep. 7(1), 2395 (2017).
[Crossref]

Other (4)

Y. Chen, M. Ding, J. Wang, Y. Zhao, and D. Shen, “Direct generation of pulsed vortex beam from a Tm:LuYAG laser at 2018nm,” in Laser Congress 2019 (ASSL, LAC, LS&C) (OSA, 2019), p. JTu3A.11.

D. Lin, J. M. O. Daniel, and W. A. Clarkson, “Controlling the handedness of directly excited Laguerre Gaussian modes in a solid-state laser,” 2013 Conf. Lasers Electro-Optics Eur. Int. Quantum Electron. Conf. CLEO/Europe-IQEC 2013 39, 3903–3906 (2013).

S. Carbajo Garcia and K. Bauchert, “Power handling for LCoS spatial light modulators,” in Laser Resonators, Microresonators, and Beam Control XX, A. V. Kudryashov, A. H. Paxton, and V. S. Ilchenko, eds. (SPIE, 2018), p. 64.

U. K. F. Saltarelli, I. J. Graumann, L. Lang, D. Bauer, and C. R. Phillips, “350-W Average-Power SESAM-Modelocked Ultrafast Thin -Disk Laser,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (IEEE, 2019), p. paper cf_1_1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The concept of the VOC with a fundamental Gaussian input, which is partially transmitted as a vortex mode, with the remainder reflected unchanged.
Fig. 2.
Fig. 2. The laser cavity and VOC operation. (a) Standard linear cavity, composed of: high reflectance (HR) back mirror (BM), Nd:YVO4 crystal, acousto-optic modulator (AOM), intracavity lens and output coupler (OC). (b) Converted linear cavity with the VOC. The lens to OC and lens to M2 distances are matched in both cases. The inset intensity profiles show the beam at different points. (c) Schematic of a top view of the VOC showing how an angular misalignment is imparted between the two counter-propagating beams. (d) Side view of the AR plate, which can be tilted to introduce a spatial separation between the two counter-propagating beams.
Fig. 3.
Fig. 3. Average output power at 150 kHz repetition rate and 20% output coupling against absorbed pump power. The VOC cavity results are in red and the linear cavity results are in black.
Fig. 4.
Fig. 4. (a) Average vortex power of the VOC cavity against repetition rate of Q-switching at 12.2 W of absorbed pump power. (b) Pulse energy (black) and pulse full-width half-maximum (FWHM) duration (red) of the VOC cavity against pulse repetition rate at 12.2 W of absorbed pump power.
Fig. 5.
Fig. 5. Spatial intensity profiles of the a) the vortex output and b) the intracavity mode of the VOC cavity. The M2 of each beam is inset.
Fig. 6.
Fig. 6. (left) Measured phase profile of a circular cross section around the phase singularity of the vortex with right handedness and (right) measured phase profile of the vortex with left handedness. The retrieved phase images for each handedness is inset. The measured phase data is shown in black, with the theoretical phase profile in red.
Fig. 7.
Fig. 7. (top) The beam propagation factor (M2) and average power output of the linear cavity against detuning (lens position). (bottom) M2 of the vortex and intracavity beam of the VOC and the average power of the vortex against detuning of the cavity. Dashed line highlights the point at which the VOC is no longer able to suppress the higher order modes in the cavity. Beam profiles for the VOC and linear cavities are inset, corresponding to the lens position at 7 mm, 25 mm and 33 mm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = 1 2 { 1 exp [ 4 ( d w 0 ) 2 ] } .

Metrics