Abstract

A 459 nm Faraday anomalous dispersion optical filter (FADOF) working at the side wings of the cesium 6S1/27P1/2 transition with weak oscillator strength is achieved. The transmittance of the higher side wing reaches 98% at a temperature of 179°C and magnetic field above 323 G. The experimental results coincide with the theoretical predictions in 1982 and 1995, which were not realized in experiments for over three decades. Due to its high transmittance, high accuracy, and narrow linewidth, the 459 nm FADOF can be applied in underwater optical communications, the building of active optical clocks, and laser frequency stabilization in active optical clocks.

© 2015 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Cs Faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm

Yanfei Wang, Xiaogang Zhang, Dongying Wang, Zhiming Tao, Wei Zhuang, and Jingbiao Chen
Opt. Express 20(23) 25817-25825 (2012)

Isotope 87Rb Faraday anomalous dispersion optical filter at 420  nm

Li Ling and Gang Bi
Opt. Lett. 39(11) 3324-3327 (2014)

Analysis of excited-state Faraday anomalous dispersion optical filter at 1529 nm

Junyu Xiong, Longfei Yin, Bin Luo, and Hong Guo
Opt. Express 24(13) 14925-14933 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Ohman, “On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation,” Stockholms Obs. Ann. 19, 9–11 (1956).
  2. P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and A. Lurio, “Frequency-locking of organic dye lasers to atomic resonance lines,” Appl. Phys. Lett. 15, 179–181 (1969).
    [Crossref]
  3. T. Endo, T. Yabuzaki, M. Kitano, T. Sato, and T. Ogawa, “Frequency-locking of a CW dye laser to the center of the sodium D lines by a Faraday filter,” IEEE J. Quantum Electron. 13, 866–871 (1977).
    [Crossref]
  4. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, 2069–2075 (1982).
    [Crossref]
  5. S. D. Harrell, C.-Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters revisited: theory and applications,” J. Opt. Soc. Am. B 26, 659–670 (2009).
    [Crossref]
  6. A. Popescu and T. Walther, “On the potential of Faraday anomalous dispersion optical filters as high-resolution edge filters,” Laser Phys. 15, 55–60 (2005).
  7. J. A. Zielińska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett. 37, 524–526 (2012).
    [Crossref]
  8. B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett. 16, 1617–1619 (1991).
    [Crossref]
  9. B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455  nm transition,” IEEE Photon. Technol. Lett. 4, 488–490 (1992).
    [Crossref]
  10. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852  nm,” Opt. Lett. 16, 846–848 (1991).
    [Crossref]
  11. M. A. Zentile, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Atomic Faraday filter with equivalent noise bandwidth less than 1  GHz,” Opt. Lett. 40, 2000–2003 (2015).
    [Crossref]
  12. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16, 867–869 (1991).
    [Crossref]
  13. L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, “Optical isolator using an atomic vapor in the hyperfine Paschen–Back regime,” Opt. Lett. 37, 3405–3407 (2012).
    [Crossref]
  14. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
    [Crossref]
  15. A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98, 667–675 (2010).
    [Crossref]
  16. A. Rudolf and T. Walther, “High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration,” Opt. Lett. 37, 4477–4479 (2012).
    [Crossref]
  17. A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean,” Opt. Eng. 53, 051407 (2014).
    [Crossref]
  18. R. C. Smith and J. E. Tyler, “Optical properties of clear natural water,” J. Opt. Soc. Am. 57, 589–594 (1967).
    [Crossref]
  19. X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1  MHz accuracy,” Opt. Express 21, 28010–28018 (2013).
    [Crossref]
  20. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
    [Crossref]
  21. J. Chen, “Active optical clock,” Chin. Sci. Bull. 54, 348–352 (2009).
    [Crossref]
  22. W. Zhuang and J. Chen, “An active Faraday optical frequency standard,” Opt. Lett. 39, 6339–6342 (2014).
    [Crossref]
  23. J. Menders, P. Searcy, K. Roff, S. H. Bloom, and E. Korevaar, “Ultra-narrow linefiltering using a Cs Faraday filter at 455  nm,” in Proceedings of the International Conference on Lasers (1991).
  24. Y. Zhang, Y. Bi, X. Jiang, J. Yu, and Z. Ma, “Magneto-optical dispersion filter at the Cs 455, 459  nm transition,” Proc. SPIE 2893, 120–123 (1996).
    [Crossref]
  25. P. M. Stone, “Cesium oscillator strengths,” Phy. Rev. 127, 1151–1156 (1962).
    [Crossref]
  26. L. Weller, R. J. Bettles, P. Siddons, C. S. Adams, and I. G. Hughes, “Absolute absorption on the rubidium D1 line including resonant dipole-dipole interactions,” J. Phys. B 44, 195006 (2011).
    [Crossref]
  27. M. A. Zentile, R. S. Mathew, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Effect of line broadening on the performance of Faraday filters,” arXiv:1504.03651 (2015).
  28. D. Pan, Z. Xu, X. Xue, W. Zhuang, and J. Chen, “Lasing of cesium active optical clock with 459  nm laser pumping,” in Proceedings of 2014 IEEE International Frequency Control Symposium (FCS) (2014), pp. 242–245.

2015 (1)

2014 (2)

A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean,” Opt. Eng. 53, 051407 (2014).
[Crossref]

W. Zhuang and J. Chen, “An active Faraday optical frequency standard,” Opt. Lett. 39, 6339–6342 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (2)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref]

L. Weller, R. J. Bettles, P. Siddons, C. S. Adams, and I. G. Hughes, “Absolute absorption on the rubidium D1 line including resonant dipole-dipole interactions,” J. Phys. B 44, 195006 (2011).
[Crossref]

2010 (1)

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98, 667–675 (2010).
[Crossref]

2009 (2)

2005 (1)

A. Popescu and T. Walther, “On the potential of Faraday anomalous dispersion optical filters as high-resolution edge filters,” Laser Phys. 15, 55–60 (2005).

1996 (1)

Y. Zhang, Y. Bi, X. Jiang, J. Yu, and Z. Ma, “Magneto-optical dispersion filter at the Cs 455, 459  nm transition,” Proc. SPIE 2893, 120–123 (1996).
[Crossref]

1995 (1)

1992 (1)

B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455  nm transition,” IEEE Photon. Technol. Lett. 4, 488–490 (1992).
[Crossref]

1991 (3)

1982 (1)

1977 (1)

T. Endo, T. Yabuzaki, M. Kitano, T. Sato, and T. Ogawa, “Frequency-locking of a CW dye laser to the center of the sodium D lines by a Faraday filter,” IEEE J. Quantum Electron. 13, 866–871 (1977).
[Crossref]

1969 (1)

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and A. Lurio, “Frequency-locking of organic dye lasers to atomic resonance lines,” Appl. Phys. Lett. 15, 179–181 (1969).
[Crossref]

1967 (1)

1962 (1)

P. M. Stone, “Cesium oscillator strengths,” Phy. Rev. 127, 1151–1156 (1962).
[Crossref]

1956 (1)

Y. Ohman, “On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation,” Stockholms Obs. Ann. 19, 9–11 (1956).

Adams, C. S.

M. A. Zentile, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Atomic Faraday filter with equivalent noise bandwidth less than 1  GHz,” Opt. Lett. 40, 2000–2003 (2015).
[Crossref]

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, “Optical isolator using an atomic vapor in the hyperfine Paschen–Back regime,” Opt. Lett. 37, 3405–3407 (2012).
[Crossref]

L. Weller, R. J. Bettles, P. Siddons, C. S. Adams, and I. G. Hughes, “Absolute absorption on the rubidium D1 line including resonant dipole-dipole interactions,” J. Phys. B 44, 195006 (2011).
[Crossref]

M. A. Zentile, R. S. Mathew, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Effect of line broadening on the performance of Faraday filters,” arXiv:1504.03651 (2015).

Beduini, F. A.

Benson, K.

Bettles, R. J.

L. Weller, R. J. Bettles, P. Siddons, C. S. Adams, and I. G. Hughes, “Absolute absorption on the rubidium D1 line including resonant dipole-dipole interactions,” J. Phys. B 44, 195006 (2011).
[Crossref]

Bi, Y.

Y. Zhang, Y. Bi, X. Jiang, J. Yu, and Z. Ma, “Magneto-optical dispersion filter at the Cs 455, 459  nm transition,” Proc. SPIE 2893, 120–123 (1996).
[Crossref]

Bloom, S. H.

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852  nm,” Opt. Lett. 16, 846–848 (1991).
[Crossref]

J. Menders, P. Searcy, K. Roff, S. H. Bloom, and E. Korevaar, “Ultra-narrow linefiltering using a Cs Faraday filter at 455  nm,” in Proceedings of the International Conference on Lasers (1991).

Chen, H.

Chen, J.

W. Zhuang and J. Chen, “An active Faraday optical frequency standard,” Opt. Lett. 39, 6339–6342 (2014).
[Crossref]

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1  MHz accuracy,” Opt. Express 21, 28010–28018 (2013).
[Crossref]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref]

J. Chen, “Active optical clock,” Chin. Sci. Bull. 54, 348–352 (2009).
[Crossref]

D. Pan, Z. Xu, X. Xue, W. Zhuang, and J. Chen, “Lasing of cesium active optical clock with 459  nm laser pumping,” in Proceedings of 2014 IEEE International Frequency Control Symposium (FCS) (2014), pp. 242–245.

Chen, S. S.

Dang, A.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref]

Dick, D. J.

Duan, M.

Endo, T.

T. Endo, T. Yabuzaki, M. Kitano, T. Sato, and T. Ogawa, “Frequency-locking of a CW dye laser to the center of the sodium D lines by a Faraday filter,” IEEE J. Quantum Electron. 13, 866–871 (1977).
[Crossref]

Gan, J.

Godbout, N.

Guo, H.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref]

Harrell, S. D.

Hong, Y.

Hu, Z. L.

Hughes, I. G.

M. A. Zentile, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Atomic Faraday filter with equivalent noise bandwidth less than 1  GHz,” Opt. Lett. 40, 2000–2003 (2015).
[Crossref]

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, “Optical isolator using an atomic vapor in the hyperfine Paschen–Back regime,” Opt. Lett. 37, 3405–3407 (2012).
[Crossref]

L. Weller, R. J. Bettles, P. Siddons, C. S. Adams, and I. G. Hughes, “Absolute absorption on the rubidium D1 line including resonant dipole-dipole interactions,” J. Phys. B 44, 195006 (2011).
[Crossref]

M. A. Zentile, R. S. Mathew, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Effect of line broadening on the performance of Faraday filters,” arXiv:1504.03651 (2015).

Jiang, X.

Y. Zhang, Y. Bi, X. Jiang, J. Yu, and Z. Ma, “Magneto-optical dispersion filter at the Cs 455, 459  nm transition,” Proc. SPIE 2893, 120–123 (1996).
[Crossref]

Keaveney, J.

M. A. Zentile, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Atomic Faraday filter with equivalent noise bandwidth less than 1  GHz,” Opt. Lett. 40, 2000–2003 (2015).
[Crossref]

M. A. Zentile, R. S. Mathew, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Effect of line broadening on the performance of Faraday filters,” arXiv:1504.03651 (2015).

Kitano, M.

T. Endo, T. Yabuzaki, M. Kitano, T. Sato, and T. Ogawa, “Frequency-locking of a CW dye laser to the center of the sodium D lines by a Faraday filter,” IEEE J. Quantum Electron. 13, 866–871 (1977).
[Crossref]

Kleinbach, K. S.

Knappe, S.

Kong, J.

Korevaar, E.

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852  nm,” Opt. Lett. 16, 846–848 (1991).
[Crossref]

J. Menders, P. Searcy, K. Roff, S. H. Bloom, and E. Korevaar, “Ultra-narrow linefiltering using a Cs Faraday filter at 455  nm,” in Proceedings of the International Conference on Lasers (1991).

Krueger, D. A.

Lankard, J. R.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and A. Lurio, “Frequency-locking of organic dye lasers to atomic resonance lines,” Appl. Phys. Lett. 15, 179–181 (1969).
[Crossref]

Li, Y.

Liu, C. S.

Luo, B.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref]

Lurio, A.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and A. Lurio, “Frequency-locking of organic dye lasers to atomic resonance lines,” Appl. Phys. Lett. 15, 179–181 (1969).
[Crossref]

Ma, Z.

Y. Zhang, Y. Bi, X. Jiang, J. Yu, and Z. Ma, “Magneto-optical dispersion filter at the Cs 455, 459  nm transition,” Proc. SPIE 2893, 120–123 (1996).
[Crossref]

Mathew, R. S.

M. A. Zentile, R. S. Mathew, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Effect of line broadening on the performance of Faraday filters,” arXiv:1504.03651 (2015).

Menders, J.

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852  nm,” Opt. Lett. 16, 846–848 (1991).
[Crossref]

J. Menders, P. Searcy, K. Roff, S. H. Bloom, and E. Korevaar, “Ultra-narrow linefiltering using a Cs Faraday filter at 455  nm,” in Proceedings of the International Conference on Lasers (1991).

Miao, X.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref]

Mitchell, M. W.

Moruzzi, V. L.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and A. Lurio, “Frequency-locking of organic dye lasers to atomic resonance lines,” Appl. Phys. Lett. 15, 179–181 (1969).
[Crossref]

Ogawa, T.

T. Endo, T. Yabuzaki, M. Kitano, T. Sato, and T. Ogawa, “Frequency-locking of a CW dye laser to the center of the sodium D lines by a Faraday filter,” IEEE J. Quantum Electron. 13, 866–871 (1977).
[Crossref]

Ohman, Y.

Y. Ohman, “On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation,” Stockholms Obs. Ann. 19, 9–11 (1956).

Pan, D.

D. Pan, Z. Xu, X. Xue, W. Zhuang, and J. Chen, “Lasing of cesium active optical clock with 459  nm laser pumping,” in Proceedings of 2014 IEEE International Frequency Control Symposium (FCS) (2014), pp. 242–245.

Popescu, A.

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98, 667–675 (2010).
[Crossref]

A. Popescu and T. Walther, “On the potential of Faraday anomalous dispersion optical filters as high-resolution edge filters,” Laser Phys. 15, 55–60 (2005).

Roff, K.

J. Menders, P. Searcy, K. Roff, S. H. Bloom, and E. Korevaar, “Ultra-narrow linefiltering using a Cs Faraday filter at 455  nm,” in Proceedings of the International Conference on Lasers (1991).

Rudolf, A.

A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean,” Opt. Eng. 53, 051407 (2014).
[Crossref]

A. Rudolf and T. Walther, “High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration,” Opt. Lett. 37, 4477–4479 (2012).
[Crossref]

Sato, T.

T. Endo, T. Yabuzaki, M. Kitano, T. Sato, and T. Ogawa, “Frequency-locking of a CW dye laser to the center of the sodium D lines by a Faraday filter,” IEEE J. Quantum Electron. 13, 866–871 (1977).
[Crossref]

Searcy, P.

J. Menders, P. Searcy, K. Roff, S. H. Bloom, and E. Korevaar, “Ultra-narrow linefiltering using a Cs Faraday filter at 455  nm,” in Proceedings of the International Conference on Lasers (1991).

Shay, T. M.

She, C.-Y.

Siddons, P.

L. Weller, R. J. Bettles, P. Siddons, C. S. Adams, and I. G. Hughes, “Absolute absorption on the rubidium D1 line including resonant dipole-dipole interactions,” J. Phys. B 44, 195006 (2011).
[Crossref]

Smith, R. C.

Sorokin, P. P.

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and A. Lurio, “Frequency-locking of organic dye lasers to atomic resonance lines,” Appl. Phys. Lett. 15, 179–181 (1969).
[Crossref]

Stone, P. M.

P. M. Stone, “Cesium oscillator strengths,” Phy. Rev. 127, 1151–1156 (1962).
[Crossref]

Tang, J.

Tao, Z.

Tyler, J. E.

Walther, T.

A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean,” Opt. Eng. 53, 051407 (2014).
[Crossref]

A. Rudolf and T. Walther, “High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration,” Opt. Lett. 37, 4477–4479 (2012).
[Crossref]

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98, 667–675 (2010).
[Crossref]

A. Popescu and T. Walther, “On the potential of Faraday anomalous dispersion optical filters as high-resolution edge filters,” Laser Phys. 15, 55–60 (2005).

Wang, Q.

Weller, L.

L. Weller, K. S. Kleinbach, M. A. Zentile, S. Knappe, I. G. Hughes, and C. S. Adams, “Optical isolator using an atomic vapor in the hyperfine Paschen–Back regime,” Opt. Lett. 37, 3405–3407 (2012).
[Crossref]

L. Weller, R. J. Bettles, P. Siddons, C. S. Adams, and I. G. Hughes, “Absolute absorption on the rubidium D1 line including resonant dipole-dipole interactions,” J. Phys. B 44, 195006 (2011).
[Crossref]

Whiting, D. J.

M. A. Zentile, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Atomic Faraday filter with equivalent noise bandwidth less than 1  GHz,” Opt. Lett. 40, 2000–2003 (2015).
[Crossref]

M. A. Zentile, R. S. Mathew, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Effect of line broadening on the performance of Faraday filters,” arXiv:1504.03651 (2015).

Xu, Z.

D. Pan, Z. Xu, X. Xue, W. Zhuang, and J. Chen, “Lasing of cesium active optical clock with 459  nm laser pumping,” in Proceedings of 2014 IEEE International Frequency Control Symposium (FCS) (2014), pp. 242–245.

Xue, X.

D. Pan, Z. Xu, X. Xue, W. Zhuang, and J. Chen, “Lasing of cesium active optical clock with 459  nm laser pumping,” in Proceedings of 2014 IEEE International Frequency Control Symposium (FCS) (2014), pp. 242–245.

Yabuzaki, T.

T. Endo, T. Yabuzaki, M. Kitano, T. Sato, and T. Ogawa, “Frequency-locking of a CW dye laser to the center of the sodium D lines by a Faraday filter,” IEEE J. Quantum Electron. 13, 866–871 (1977).
[Crossref]

Yeh, P.

Yin, B.

B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455  nm transition,” IEEE Photon. Technol. Lett. 4, 488–490 (1992).
[Crossref]

B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett. 16, 1617–1619 (1991).
[Crossref]

Yin, L.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref]

Yu, J.

Y. Zhang, Y. Bi, X. Jiang, J. Yu, and Z. Ma, “Magneto-optical dispersion filter at the Cs 455, 459  nm transition,” Proc. SPIE 2893, 120–123 (1996).
[Crossref]

Yuan, T.

Zentile, M. A.

Zhang, L.

Zhang, X.

Zhang, Y.

Y. Zhang, Y. Bi, X. Jiang, J. Yu, and Z. Ma, “Magneto-optical dispersion filter at the Cs 455, 459  nm transition,” Proc. SPIE 2893, 120–123 (1996).
[Crossref]

Zheng, L.

Zhu, C.

Zhuang, W.

W. Zhuang and J. Chen, “An active Faraday optical frequency standard,” Opt. Lett. 39, 6339–6342 (2014).
[Crossref]

X. Zhang, Z. Tao, C. Zhu, Y. Hong, W. Zhuang, and J. Chen, “An all-optical locking of a semiconductor laser to the atomic resonance line with 1  MHz accuracy,” Opt. Express 21, 28010–28018 (2013).
[Crossref]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref]

D. Pan, Z. Xu, X. Xue, W. Zhuang, and J. Chen, “Lasing of cesium active optical clock with 459  nm laser pumping,” in Proceedings of 2014 IEEE International Frequency Control Symposium (FCS) (2014), pp. 242–245.

Zielinska, J. A.

Appl. Opt. (2)

Appl. Phys. B (1)

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: the high vapor density and high pump intensity regime,” Appl. Phys. B 98, 667–675 (2010).
[Crossref]

Appl. Phys. Lett. (1)

P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and A. Lurio, “Frequency-locking of organic dye lasers to atomic resonance lines,” Appl. Phys. Lett. 15, 179–181 (1969).
[Crossref]

Chin. Sci. Bull. (1)

J. Chen, “Active optical clock,” Chin. Sci. Bull. 54, 348–352 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Endo, T. Yabuzaki, M. Kitano, T. Sato, and T. Ogawa, “Frequency-locking of a CW dye laser to the center of the sodium D lines by a Faraday filter,” IEEE J. Quantum Electron. 13, 866–871 (1977).
[Crossref]

IEEE Photon. Technol. Lett. (1)

B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455  nm transition,” IEEE Photon. Technol. Lett. 4, 488–490 (1992).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

L. Weller, R. J. Bettles, P. Siddons, C. S. Adams, and I. G. Hughes, “Absolute absorption on the rubidium D1 line including resonant dipole-dipole interactions,” J. Phys. B 44, 195006 (2011).
[Crossref]

Laser Phys. (1)

A. Popescu and T. Walther, “On the potential of Faraday anomalous dispersion optical filters as high-resolution edge filters,” Laser Phys. 15, 55–60 (2005).

Opt. Eng. (1)

A. Rudolf and T. Walther, “Laboratory demonstration of a Brillouin lidar to remotely measure temperature profiles of the ocean,” Opt. Eng. 53, 051407 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (8)

Phy. Rev. (1)

P. M. Stone, “Cesium oscillator strengths,” Phy. Rev. 127, 1151–1156 (1962).
[Crossref]

Proc. SPIE (1)

Y. Zhang, Y. Bi, X. Jiang, J. Yu, and Z. Ma, “Magneto-optical dispersion filter at the Cs 455, 459  nm transition,” Proc. SPIE 2893, 120–123 (1996).
[Crossref]

Rev. Sci. Instrum. (1)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011).
[Crossref]

Stockholms Obs. Ann. (1)

Y. Ohman, “On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation,” Stockholms Obs. Ann. 19, 9–11 (1956).

Other (3)

J. Menders, P. Searcy, K. Roff, S. H. Bloom, and E. Korevaar, “Ultra-narrow linefiltering using a Cs Faraday filter at 455  nm,” in Proceedings of the International Conference on Lasers (1991).

M. A. Zentile, R. S. Mathew, D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Effect of line broadening on the performance of Faraday filters,” arXiv:1504.03651 (2015).

D. Pan, Z. Xu, X. Xue, W. Zhuang, and J. Chen, “Lasing of cesium active optical clock with 459  nm laser pumping,” in Proceedings of 2014 IEEE International Frequency Control Symposium (FCS) (2014), pp. 242–245.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup of the FADOF working at Cs 6 S 1 / 2 7 P 1 / 2 transition and related energy levels. An external cavity diode laser is used for transmittance detection. G1 and G2 stand for two Glan–Taylor prisms, of which the polarizations are orthogonal to each other. M1 and M2 stand for a pair of solenoids that can contain the whole glass cell and its package. D stands for photoelectric detector. The Cs cell inside the solenoids is 5 cm long and heated.
Fig. 2.
Fig. 2. Transmittance with different temperatures at 323 G. (a) Left column shows the transmitted characteristics from ground state F = 4 with temperatures of 179°C, 164°C, 153°C, 137°C, 124°C, and 109°C. (b) Right column shows the transmitted characteristics from ground state F = 3 under the same conditions of temperature. Above 137°C, the FADOF works at the side wings. At 179°C and 323 G [corresponding to the first row in (a) and (b)], with frequency increasing, the transmittance of the four peaks is 98%, 82%, 42%, and 92%. The linewidths (full width at half maximum, the same hereinafter) of these four peaks are 1.2, 0.6, 0.5, and 0.8 GHz, respectively.
Fig. 3.
Fig. 3. Cs 459 nm FADOF transmittance with different magnetic fields at the Cs cell temperature of 179°C from different ground states. (a) Transmittance curves from ground state F = 4 . (b) Transmittance curves from ground state F = 3 . With the magnetic field increasing, the transmitted signal arises at both wings of the absorption signal. The wavelength of the transition 6 S 1 / 2 ( F = 4 ) 7 P 1 / 2 is 459.320 nm, which for transition 6 S 1 / 2 ( F = 3 ) 7 P 1 / 2 is 459.314 nm.
Fig. 4.
Fig. 4. (a) and (b) Transmittance of the peak transmission of 459 nm FADOF changing with the magnetic field at different temperatures from ground states F = 4 and F = 3 . Symbols are data points; continuous curves are guides to the eye.
Fig. 5.
Fig. 5. (a) and (b) Transmittance of the peak transmission 459 nm FADOF changing with temperatures at different magnetic fields from ground states F = 4 and F = 3 . Symbols are data points; continuous curves are guides to the eye.
Fig. 6.
Fig. 6. ENBW of the transmitted spectra changing with (a) magnetic field and (b) temperature. Symbols are data points; continuous curves are guides to the eye.

Metrics