Abstract

We experimentally demonstrate the optical properties of gratings engraved in a single-mode waveguide fabricated on top of a dielectric multilayer platform. The structure can be approached as a reflector for Bloch-surface-wave-based two-dimensional optical systems. The gratings have been fabricated on a thin (λ/25) titanium dioxide layer with a thickness of a few tens of nanometers deposited on the top of a multilayer platform. The optical properties of the gratings have been characterized in the near field with the aid of multi-heterodyne scanning near-field optical microscopy. We investigate the surface wave’s interference pattern, produced by incident and reflected light in front of the gratings. The presented gratings behave as an efficient Bloch-surface–wave-based reflector at telecommunication wavelength.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Near-field characterization of a Bloch-surface-wave-based 2D disk resonator

R. Dubey, B. Vosoughi Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig
Opt. Lett. 41(21) 4867-4870 (2016)

Two-dimensional polymer grating and prism on Bloch surface waves platform

Libo Yu, Elsie Barakat, Joab Di Francesco, and Hans Peter Herzig
Opt. Express 23(25) 31640-31647 (2015)

In-plane 2D focusing of surface waves by ultrathin refractive structures

A. Angelini, A. Lamberti, S. Ricciardi, F. Frascella, P. Munzert, N. De Leo, and E. Descrovi
Opt. Lett. 39(22) 6391-6394 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
    [Crossref]
  2. M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91, 253125 (2007).
    [Crossref]
  3. T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
    [Crossref]
  4. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
    [Crossref]
  5. M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
    [Crossref]
  6. K. V. Sreekanth, S. Zeng, J. Shang, K.-T. Yong, and T. Yu, “Excitation of surface electromagnetic waves in a graphene-based Bragg grating,” Sci. Rep. 2, 737 (2012).
    [Crossref]
  7. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18, 8087–8093 (2010).
    [Crossref]
  8. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B 174, 292–298 (2012).
    [Crossref]
  9. I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
    [Crossref]
  10. V. V. Moskalenko, I. V. Soboleva, and A. A. Fedyanin, “Surface wave-induced enhancement of the Goos-Hänchen effect in one-dimensional photonic crystals,” J. Exp. Theor. Phys. Lett. 91, 382–386 (2010).
    [Crossref]
  11. E. Bontempi, L. E. Depero, L. Sangaletti, F. Giorgis, and C. F. Pirri, “Growth process analysis of a-Si1-xNx:H films probed by X-ray reflectivity,” Mater. Chem. Phys. 66, 172–176 (2000).
    [Crossref]
  12. M. Hayrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Saynatjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Lightwave Technol. 32, 208–212 (2014).
    [Crossref]
  13. R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 1–9 (2017).
    [Crossref]
  14. L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, 1–7 (2014).
    [Crossref]
  15. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
    [Crossref]
  16. L. Yu, E. Barakat, J. Di Francesco, and H. P. Herzig, “Two-dimensional polymer grating and prism on Bloch surface waves platform,” Opt. Express 23, 31640–31647 (2015).
    [Crossref]
  17. M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
    [Crossref]
  18. X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field investigation of Bloch surface wave propagation in curved waveguides,” J. Eur. Opt. Soc. 9, 14049 (2014).
    [Crossref]
  19. R. Dubey, B. V. Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
    [Crossref]
  20. R. Dubey, B. V. Lahijani, M.-S. Kim, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field investigation of Bloch surface wave based 2D optical components,” Proc. SPIE 10106, 101061G (2017).
    [Crossref]
  21. L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23, 27034–27045 (2015).
    [Crossref]
  22. E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” J. Exp. Theor. Phys. Lett. 99, 63–66 (2014).
    [Crossref]
  23. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and O. J. Martin, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
    [Crossref]
  24. J.-C. Weeber, Y. Lacroute, and A. Dereux, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
    [Crossref]
  25. A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
    [Crossref]

2017 (3)

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 1–9 (2017).
[Crossref]

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

R. Dubey, B. V. Lahijani, M.-S. Kim, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field investigation of Bloch surface wave based 2D optical components,” Proc. SPIE 10106, 101061G (2017).
[Crossref]

2016 (1)

2015 (2)

2014 (4)

M. Hayrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Saynatjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Lightwave Technol. 32, 208–212 (2014).
[Crossref]

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field investigation of Bloch surface wave propagation in curved waveguides,” J. Eur. Opt. Soc. 9, 14049 (2014).
[Crossref]

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, 1–7 (2014).
[Crossref]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” J. Exp. Theor. Phys. Lett. 99, 63–66 (2014).
[Crossref]

2012 (2)

K. V. Sreekanth, S. Zeng, J. Shang, K.-T. Yong, and T. Yu, “Excitation of surface electromagnetic waves in a graphene-based Bragg grating,” Sci. Rep. 2, 737 (2012).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B 174, 292–298 (2012).
[Crossref]

2010 (5)

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18, 8087–8093 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

V. V. Moskalenko, I. V. Soboleva, and A. A. Fedyanin, “Surface wave-induced enhancement of the Goos-Hänchen effect in one-dimensional photonic crystals,” J. Exp. Theor. Phys. Lett. 91, 382–386 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and O. J. Martin, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

2009 (1)

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

2007 (2)

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91, 253125 (2007).
[Crossref]

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

2006 (1)

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

2005 (1)

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[Crossref]

2004 (1)

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

2000 (1)

E. Bontempi, L. E. Depero, L. Sangaletti, F. Giorgis, and C. F. Pirri, “Growth process analysis of a-Si1-xNx:H films probed by X-ray reflectivity,” Mater. Chem. Phys. 66, 172–176 (2000).
[Crossref]

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[Crossref]

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

Aussenegg, F. R.

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

Barakat, E.

R. Dubey, B. V. Lahijani, M.-S. Kim, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field investigation of Bloch surface wave based 2D optical components,” Proc. SPIE 10106, 101061G (2017).
[Crossref]

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 1–9 (2017).
[Crossref]

R. Dubey, B. V. Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

L. Yu, E. Barakat, J. Di Francesco, and H. P. Herzig, “Two-dimensional polymer grating and prism on Bloch surface waves platform,” Opt. Express 23, 31640–31647 (2015).
[Crossref]

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field investigation of Bloch surface wave propagation in curved waveguides,” J. Eur. Opt. Soc. 9, 14049 (2014).
[Crossref]

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, 1–7 (2014).
[Crossref]

Bezus, E. A.

L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23, 27034–27045 (2015).
[Crossref]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” J. Exp. Theor. Phys. Lett. 99, 63–66 (2014).
[Crossref]

Bontempi, E.

E. Bontempi, L. E. Depero, L. Sangaletti, F. Giorgis, and C. F. Pirri, “Growth process analysis of a-Si1-xNx:H films probed by X-ray reflectivity,” Mater. Chem. Phys. 66, 172–176 (2000).
[Crossref]

Brunazzo, D.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and O. J. Martin, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

Bykov, D. A.

L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23, 27034–27045 (2015).
[Crossref]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” J. Exp. Theor. Phys. Lett. 99, 63–66 (2014).
[Crossref]

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[Crossref]

Danz, N.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B 174, 292–298 (2012).
[Crossref]

Depero, L. E.

E. Bontempi, L. E. Depero, L. Sangaletti, F. Giorgis, and C. F. Pirri, “Growth process analysis of a-Si1-xNx:H films probed by X-ray reflectivity,” Mater. Chem. Phys. 66, 172–176 (2000).
[Crossref]

Dereux, A.

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

Descharmes, N.

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

Descrovi, E.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B 174, 292–298 (2012).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and O. J. Martin, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18, 8087–8093 (2010).
[Crossref]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

Di Francesco, J.

L. Yu, E. Barakat, J. Di Francesco, and H. P. Herzig, “Two-dimensional polymer grating and prism on Bloch surface waves platform,” Opt. Express 23, 31640–31647 (2015).
[Crossref]

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, 1–7 (2014).
[Crossref]

Ditlbacher, H.

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

Dominici, L.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B 174, 292–298 (2012).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18, 8087–8093 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and O. J. Martin, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

Doskolovich, L. L.

L. L. Doskolovich, E. A. Bezus, and D. A. Bykov, “Phase-shifted Bragg gratings for Bloch surface waves,” Opt. Express 23, 27034–27045 (2015).
[Crossref]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” J. Exp. Theor. Phys. Lett. 99, 63–66 (2014).
[Crossref]

Drezet, A.

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

Dubey, R.

R. Dubey, B. V. Lahijani, M.-S. Kim, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field investigation of Bloch surface wave based 2D optical components,” Proc. SPIE 10106, 101061G (2017).
[Crossref]

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 1–9 (2017).
[Crossref]

R. Dubey, B. V. Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

Fedyanin, A. A.

V. V. Moskalenko, I. V. Soboleva, and A. A. Fedyanin, “Surface wave-induced enhancement of the Goos-Hänchen effect in one-dimensional photonic crystals,” J. Exp. Theor. Phys. Lett. 91, 382–386 (2010).
[Crossref]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

Galler, N.

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

Gandhi, V.

Giorgis, F.

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and O. J. Martin, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18, 8087–8093 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

E. Bontempi, L. E. Depero, L. Sangaletti, F. Giorgis, and C. F. Pirri, “Growth process analysis of a-Si1-xNx:H films probed by X-ray reflectivity,” Mater. Chem. Phys. 66, 172–176 (2000).
[Crossref]

Gonzalez, M. U.

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

Hayrinen, M.

Häyrinen, M.

R. Dubey, B. V. Lahijani, M.-S. Kim, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field investigation of Bloch surface wave based 2D optical components,” Proc. SPIE 10106, 101061G (2017).
[Crossref]

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 1–9 (2017).
[Crossref]

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

R. Dubey, B. V. Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

Herzig, H. P.

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

R. Dubey, B. V. Lahijani, M.-S. Kim, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field investigation of Bloch surface wave based 2D optical components,” Proc. SPIE 10106, 101061G (2017).
[Crossref]

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 1–9 (2017).
[Crossref]

R. Dubey, B. V. Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

L. Yu, E. Barakat, J. Di Francesco, and H. P. Herzig, “Two-dimensional polymer grating and prism on Bloch surface waves platform,” Opt. Express 23, 31640–31647 (2015).
[Crossref]

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field investigation of Bloch surface wave propagation in curved waveguides,” J. Eur. Opt. Soc. 9, 14049 (2014).
[Crossref]

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, 1–7 (2014).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
[Crossref]

Hohenau, A.

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

Honkanen, S.

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 1–9 (2017).
[Crossref]

M. Hayrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Saynatjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Lightwave Technol. 32, 208–212 (2014).
[Crossref]

Hvozdara, L.

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, 1–7 (2014).
[Crossref]

Karvonen, L.

Kim, M.-S.

R. Dubey, B. V. Lahijani, M.-S. Kim, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field investigation of Bloch surface wave based 2D optical components,” Proc. SPIE 10106, 101061G (2017).
[Crossref]

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

Krenn, J. R.

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

Kuittinen, M.

R. Dubey, B. V. Lahijani, M.-S. Kim, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field investigation of Bloch surface wave based 2D optical components,” Proc. SPIE 10106, 101061G (2017).
[Crossref]

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 1–9 (2017).
[Crossref]

R. Dubey, B. V. Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

M. Hayrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Saynatjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Lightwave Technol. 32, 208–212 (2014).
[Crossref]

Lacroute, Y.

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

Lahijani, B. V.

R. Dubey, B. V. Lahijani, M.-S. Kim, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field investigation of Bloch surface wave based 2D optical components,” Proc. SPIE 10106, 101061G (2017).
[Crossref]

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

R. Dubey, B. V. Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

Leitner, A.

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

Liscidini, M.

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91, 253125 (2007).
[Crossref]

Martin, O. J.

Martin, O. J. F.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

Michelotti, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B 174, 292–298 (2012).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18, 8087–8093 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and O. J. Martin, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

Moskalenko, V. V.

V. V. Moskalenko, I. V. Soboleva, and A. A. Fedyanin, “Surface wave-induced enhancement of the Goos-Hänchen effect in one-dimensional photonic crystals,” J. Exp. Theor. Phys. Lett. 91, 382–386 (2010).
[Crossref]

Munzert, P.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B 174, 292–298 (2012).
[Crossref]

Nakagawa, W.

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and O. J. Martin, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

Negredo, F.

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

Pirri, C. F.

E. Bontempi, L. E. Depero, L. Sangaletti, F. Giorgis, and C. F. Pirri, “Growth process analysis of a-Si1-xNx:H films probed by X-ray reflectivity,” Mater. Chem. Phys. 66, 172–176 (2000).
[Crossref]

Quaglio, M.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and O. J. Martin, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

Robertson, W. M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[Crossref]

Rockstuhl, C.

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

Roussey, M.

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 1–9 (2017).
[Crossref]

R. Dubey, B. V. Lahijani, M.-S. Kim, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field investigation of Bloch surface wave based 2D optical components,” Proc. SPIE 10106, 101061G (2017).
[Crossref]

R. Dubey, B. V. Lahijani, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field characterization of a Bloch-surface-wave-based 2D disk resonator,” Opt. Lett. 41, 4867–4870 (2016).
[Crossref]

M. Hayrinen, M. Roussey, V. Gandhi, P. Stenberg, A. Saynatjoki, L. Karvonen, M. Kuittinen, and S. Honkanen, “Low-loss titanium dioxide strip waveguides fabricated by atomic layer deposition,” J. Lightwave Technol. 32, 208–212 (2014).
[Crossref]

Sangaletti, L.

E. Bontempi, L. E. Depero, L. Sangaletti, F. Giorgis, and C. F. Pirri, “Growth process analysis of a-Si1-xNx:H films probed by X-ray reflectivity,” Mater. Chem. Phys. 66, 172–176 (2000).
[Crossref]

Saynatjoki, A.

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B 174, 292–298 (2012).
[Crossref]

Sfez, T.

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, 1–7 (2014).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and O. J. Martin, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

Shang, J.

K. V. Sreekanth, S. Zeng, J. Shang, K.-T. Yong, and T. Yu, “Excitation of surface electromagnetic waves in a graphene-based Bragg grating,” Sci. Rep. 2, 737 (2012).
[Crossref]

Shinn, M.

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[Crossref]

Sinibaldi, A.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B 174, 292–298 (2012).
[Crossref]

Sipe, J. E.

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91, 253125 (2007).
[Crossref]

Soboleva, I. V.

V. V. Moskalenko, I. V. Soboleva, and A. A. Fedyanin, “Surface wave-induced enhancement of the Goos-Hänchen effect in one-dimensional photonic crystals,” J. Exp. Theor. Phys. Lett. 91, 382–386 (2010).
[Crossref]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

Soifer, V. A.

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” J. Exp. Theor. Phys. Lett. 99, 63–66 (2014).
[Crossref]

Sonntag, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B 174, 292–298 (2012).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, S. Zeng, J. Shang, K.-T. Yong, and T. Yu, “Excitation of surface electromagnetic waves in a graphene-based Bragg grating,” Sci. Rep. 2, 737 (2012).
[Crossref]

Steinberger, B.

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

Stenberg, P.

Stepanov, A. L.

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

Straubel, J.

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

Summonte, C.

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 18, 8087–8093 (2010).
[Crossref]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

Sun, L.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field investigation of Bloch surface wave propagation in curved waveguides,” J. Eur. Opt. Soc. 9, 14049 (2014).
[Crossref]

Tan, Q.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field investigation of Bloch surface wave propagation in curved waveguides,” J. Eur. Opt. Soc. 9, 14049 (2014).
[Crossref]

Wang, J.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field investigation of Bloch surface wave propagation in curved waveguides,” J. Eur. Opt. Soc. 9, 14049 (2014).
[Crossref]

Weeber, J.-C.

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

Wu, X.

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field investigation of Bloch surface wave propagation in curved waveguides,” J. Eur. Opt. Soc. 9, 14049 (2014).
[Crossref]

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[Crossref]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[Crossref]

Yong, K.-T.

K. V. Sreekanth, S. Zeng, J. Shang, K.-T. Yong, and T. Yu, “Excitation of surface electromagnetic waves in a graphene-based Bragg grating,” Sci. Rep. 2, 737 (2012).
[Crossref]

Yu, L.

L. Yu, E. Barakat, J. Di Francesco, and H. P. Herzig, “Two-dimensional polymer grating and prism on Bloch surface waves platform,” Opt. Express 23, 31640–31647 (2015).
[Crossref]

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field investigation of Bloch surface wave propagation in curved waveguides,” J. Eur. Opt. Soc. 9, 14049 (2014).
[Crossref]

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, 1–7 (2014).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and O. J. Martin, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

Yu, T.

K. V. Sreekanth, S. Zeng, J. Shang, K.-T. Yong, and T. Yu, “Excitation of surface electromagnetic waves in a graphene-based Bragg grating,” Sci. Rep. 2, 737 (2012).
[Crossref]

Zeng, S.

K. V. Sreekanth, S. Zeng, J. Shang, K.-T. Yong, and T. Yu, “Excitation of surface electromagnetic waves in a graphene-based Bragg grating,” Sci. Rep. 2, 737 (2012).
[Crossref]

ACS Photon. (1)

M.-S. Kim, B. V. Lahijani, N. Descharmes, J. Straubel, F. Negredo, C. Rockstuhl, M. Häyrinen, M. Kuittinen, M. Roussey, and H. P. Herzig, “Subwavelength focusing of Bloch surface waves,” ACS Photon. 4, 1477–1483 (2017).
[Crossref]

Anal. Chem. (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[Crossref]

Appl. Phys. Lett. (4)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[Crossref]

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett. 91, 253125 (2007).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Two-dimensional optics on silicon nitride multilayer: refraction of Bloch surface waves,” Appl. Phys. Lett. 96, 151101 (2010).
[Crossref]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

Europhys. Lett. (1)

A. Drezet, A. L. Stepanov, A. Hohenau, B. Steinberger, N. Galler, H. Ditlbacher, A. Leitner, F. R. Aussenegg, J. R. Krenn, M. U. Gonzalez, and J.-C. Weeber, “Surface plasmon interference fringes in back-reflection,” Europhys. Lett. 74, 693–698 (2006).
[Crossref]

J. Eur. Opt. Soc. (2)

X. Wu, E. Barakat, L. Yu, L. Sun, J. Wang, Q. Tan, and H. P. Herzig, “Phase-sensitive near field investigation of Bloch surface wave propagation in curved waveguides,” J. Eur. Opt. Soc. 9, 14049 (2014).
[Crossref]

R. Dubey, E. Barakat, M. Häyrinen, M. Roussey, S. Honkanen, M. Kuittinen, and H. P. Herzig, “Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform,” J. Eur. Opt. Soc. 13, 1–9 (2017).
[Crossref]

J. Exp. Theor. Phys. Lett. (2)

V. V. Moskalenko, I. V. Soboleva, and A. A. Fedyanin, “Surface wave-induced enhancement of the Goos-Hänchen effect in one-dimensional photonic crystals,” J. Exp. Theor. Phys. Lett. 91, 382–386 (2010).
[Crossref]

E. A. Bezus, L. L. Doskolovich, D. A. Bykov, and V. A. Soifer, “Phase modulation of Bloch surface waves with the use of a diffraction microrelief at the boundary of a one-dimensional photonic crystal,” J. Exp. Theor. Phys. Lett. 99, 63–66 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H. P. Herzig, “Manipulating Bloch surface waves in 2D: a platform concept-based flat lens,” Light Sci. Appl. 3, 1–7 (2014).
[Crossref]

Mater. Chem. Phys. (1)

E. Bontempi, L. E. Depero, L. Sangaletti, F. Giorgis, and C. F. Pirri, “Growth process analysis of a-Si1-xNx:H films probed by X-ray reflectivity,” Mater. Chem. Phys. 66, 172–176 (2000).
[Crossref]

Nano Lett. (1)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

J.-C. Weeber, Y. Lacroute, and A. Dereux, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70, 235406 (2004).
[Crossref]

Proc. SPIE (1)

R. Dubey, B. V. Lahijani, M.-S. Kim, E. Barakat, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig, “Near-field investigation of Bloch surface wave based 2D optical components,” Proc. SPIE 10106, 101061G (2017).
[Crossref]

Sci. Rep. (1)

K. V. Sreekanth, S. Zeng, J. Shang, K.-T. Yong, and T. Yu, “Excitation of surface electromagnetic waves in a graphene-based Bragg grating,” Sci. Rep. 2, 737 (2012).
[Crossref]

Sens. Actuators B (2)

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators B 174, 292–298 (2012).
[Crossref]

M. Shinn and W. M. Robertson, “Surface plasmon-like sensor based on surface electromagnetic waves in a photonic band-gap material,” Sens. Actuators B 105, 360–364 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of the setup of the TIR configuration for BSW coupling with dielectric multilayers deposited on a glass wafer. The 2D grating patterned in the waveguide is fabricated on the top of the multilayers into a 60-nm-thick TiO2 layer. The SNOM probe, in collection mode, is used to observe the interaction of the BSW with the grating in the near field.
Fig. 2.
Fig. 2. Simulations using CST Microwave Studio, FDTD method. (a) Field amplitude distribution over the waveguide at a wavelength of λ=1500  nm, (b) field amplitude distribution over the waveguide at the Bragg wavelength λ=1553  nm.
Fig. 3.
Fig. 3. Near-field images acquired by MH-SNOM at the Bragg wavelength λ=1553  nm. (a) Field amplitude distribution over the waveguide grating; (b) cross section of the field amplitude in the y direction, along the waveguide; (c) high-resolution amplitude scan in the area indicated by the black rectangle in (a); (d) cross section of the field amplitude in the y direction of (c); (e) measured corresponding phase plot representing a standing wave generated by the interference of the incident and the backreflected BSW mode.
Fig. 4.
Fig. 4. Fourier spectrum computed on the complex field amplitude of the interference fringes [in Fig. 3(c)] at the Bragg wavelength λ=1553  nm. The peaks corresponds to the wavenumbers (fs) of two counterpropagating BSWs.
Fig. 5.
Fig. 5. Near-field images acquired by MH-SNOM at a wavelength of λ=1500  nm. (a) Field amplitude distribution over the waveguide grating; (b) cross section of the field amplitude in the y direction along the waveguide; (c) high-resolution amplitude scan in the area indicated by the black rectangle in (a); (d) cross section of the field amplitude in the y direction of (c); (e) phase plot showing propagating plane wave behavior that indicates very weak reflection at 1500 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C=(Amax)2(Amin)2(Amax)2+(Amin)2,
C=2R1+R.

Metrics