Abstract

We propose and demonstrate an agile X-band signal synthesizer with ultralow phase noise based on all-fiber-photonic techniques for radar applications. It shows phase noise of 145  dBc/Hz (152  dBc/Hz) at 10 kHz (100 kHz) offset frequency for 10 GHz carrier frequency with integrated RMS timing jitter between 7.6 and 9.1 fs (integration bandwidth: 10 Hz–10 MHz) for frequencies from 9 to 11 GHz. Its frequency switching time is evaluated to be 135 ns with a 135 pHz frequency tuning resolution. In addition, the X-band linear-frequency-modulated signal generated by the proposed synthesizer shows a good pulse compression ratio approximating the theoretical value. In addition to the ultrastable X-band signals, the proposed synthesizer can also provide 0–1 GHz ultralow-jitter clocks for analog-to-digital converters (ADC) and digital-to-analog converters (DAC) in radar systems and ultralow-jitter optical pulse trains for photonic ADC in photonic radar systems. The proposed X-band synthesizer shows great performance in phase stability, switching speed, and modulation capability with robustness and potential low cost, which is enabled by an all-fiber-photonics platform and can be a compelling technology suitable for future X-band radars.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Triple band frequency generator based on an optoelectronic oscillator with low phase noise

Zenghui Chen, Jian Dai, Yue Zhou, Feifei Yin, Tian Zhang, Jianqiang Li, Yitang Dai, and Kun Xu
Opt. Express 25(17) 20749-20756 (2017)

Photonic subsampling analog-to-digital conversion of microwave signals at 40-GHz with higher than 7-ENOB resolution

Jungwon Kim, Matthew J. Park, Michael H. Perrott, and Franz X. Kärtner
Opt. Express 16(21) 16509-16515 (2008)

References

  • View by:
  • |
  • |
  • |

  1. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
    [Crossref]
  2. J. D. McKinney, “Photonics illuminates the future of radar,” Nature 507, 310–312 (2014).
    [Crossref]
  3. I. S. Merrill, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).
  4. J. R. Vig, “Introduction to quartz frequency standards,” (Army Research Laboratory Electronics and Power Sources Directorate, 1992).
  5. J. Taylor, “Effects of crystal reference oscillator phase noise in a vibratory environment,” (Motorola, SOTAS Engineering Development Section, Radar Operations, 1980).
  6. D. B. Leeson, “Oscillator phase noise: a 50-year review,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1208–1225 (2016).
    [Crossref]
  7. M. Jankovic, “Phase noise in microwave oscillators and amplifiers,” Ph.D. dissertation (University of Colorado, 2010).
  8. G. Krieger and M. Younis, “Impact of oscillator noise in bistatic and multistatic SAR,” IEEE Geosci. Remote Sens. Lett. 3, 424–428 (2006).
    [Crossref]
  9. T. Pollet, M. Vanbladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43, 191–193 (1995).
    [Crossref]
  10. A. G. Armada, “Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM),” IEEE Trans. Broadcast. 47, 153–159 (2001).
    [Crossref]
  11. M. Jamil, H.-J. Zepernick, and M. I. Pettersson, “On integrated radar and communication systems using Oppermann sequences,” in IEEE Military Communications Conference (IEEE, 2008), pp. 1–6.
  12. G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
    [Crossref]
  13. J. A. Molnar, I. Corretjer, and G. Tavik, “Integrated topside-integration of narrowband and wideband array antennas for shipboard communications,” in IEEE Military Communications Conference (IEEE, 2011), pp. 1802–1807.
  14. P. H. Zhao, “The technologies of multifunction integrated RF system,” Radar ECM 3, 9–13 (2011).
  15. L. Peruzzi, “Integrated masts and EW: present and future solutions in Europe,” J. Electron. Def. 37, 24–26 (2014).
  16. C. Sturm, T. Zwick, and W. Wiesbeck, “An OFDM system concept for joint radar and communications operations,” in IEEE Vehicular Technology Conference (IEEE, 2009), pp. 1–5.
  17. Y. L. Sit, C. Sturm, L. Reichardt, T. Zwick, and W. Wiesbeck, “The OFDM joint radar-communication system: an overview,” in 3rd International Conference on Advances in Satellite and Space Communications (2011), pp. 69–74.
  18. R. A. Poisel, Introduction to Communication Electronic Warfare Systems (Artech House, 2008).
  19. A. R. Hunt, “Use of a frequency-hopping radar for imaging and motion detection through walls,” IEEE Trans. Geosci. Remote Sens. 47, 1402–1408 (2009).
    [Crossref]
  20. C. Y. Chen and P. P. Vaidyanathan, “MIMO radar ambiguity properties and optimization using frequency-hopping waveforms,” IEEE Trans. Signal Process. 56, 5926–5936 (2008).
    [Crossref]
  21. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
    [Crossref]
  22. M. I. Skolnik, Radar Handbook (McGraw-Hill, 2008).
  23. T. Sun, L. Zhang, A. K. Poddar, U. L. Rohde, and A. S. Daryoush, “Frequency synthesis of forced opto-electronic oscillators at the X-band,” Chin. Opt. Lett. 15, 010009 (2017).
  24. L. Hoover, H. Griffith, and K. DeVries, “Low noise X-band exciter using a sapphire loaded cavity oscillator,” in IEEE International Frequency Control Symposium (IEEE, 2008), pp. 309–311.
  25. T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
    [Crossref]
  26. D. Kwon, C. G. Jeon, J. Shin, M. S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7, 40917 (2017).
    [Crossref]
  27. K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5, 16250 (2015).
    [Crossref]
  28. L. Duan, “Intrinsic thermal noise of optical fibers due to mechanical dissipation,” Electron. Lett. 46, 1515–1516 (2010).
    [Crossref]
  29. K. H. Wanser, “Fundamental phase noise limit in optical fibers due to temperature fluctuations,” Electron. Lett. 28, 53–54 (1992).
    [Crossref]
  30. T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett. 38, 1712–1714 (2013).
    [Crossref]
  31. K. Jung and J. Kim, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37, 2958–2960 (2012).
    [Crossref]
  32. K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photon. J. 5, 1–7 (2013).
  33. T. J. Endres, R. B. Hall, and A. M. Lopez, “Design and analysis methods of a DDS-based synthesizer for military spaceborne applications,” in IEEE International Frequency Control Symposium (IEEE, 1994), pp. 624–632.
  34. B. G. Anderson, “Frequency switching time measurement using digital demodulation,” IEEE Trans. Instrum. Meas. 39, 353–357 (1990).
    [Crossref]
  35. D. Brandon, “Determining if a spur is related to the DDS/DAC or to some other source,” http://www.analog.com/media/en/technicaldocumentation/application-notes/131351807AN_927.pdf .
  36. A. Chenakin, “Frequency synthesis: current solutions and new trends,” Microwave J. 50, 256–260 (2007).
  37. M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek, “Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors- I: context and application,” IEEE Trans. Circuits Syst. I 54, 1006–1017 (2007).
    [Crossref]
  38. A. Lewandowski, K. Kucy, and D. Startek, “High-speed DDS-based generator of pulses with an arbitrary frequency modulation,” in International Conference on Microwaves, Radar & Wireless Communications (IEEE, 2006), pp. 125–128.
  39. C. Cook, Radar Signals: An Introduction to Theory and Application (Elsevier, 2012).
  40. W. Y. Z. Zhimin, “Effect of LFM signal flatness on pulse compression performance,” Radar Sci. Technol. 2, 100–103 (2003).
  41. D. Kwon and J. Kim, “All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10−14-level frequency instability and 1-fs-level jitter over 1-s,” Opt. Lett.309718 (to be published).

2017 (2)

T. Sun, L. Zhang, A. K. Poddar, U. L. Rohde, and A. S. Daryoush, “Frequency synthesis of forced opto-electronic oscillators at the X-band,” Chin. Opt. Lett. 15, 010009 (2017).

D. Kwon, C. G. Jeon, J. Shin, M. S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7, 40917 (2017).
[Crossref]

2016 (2)

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

D. B. Leeson, “Oscillator phase noise: a 50-year review,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1208–1225 (2016).
[Crossref]

2015 (1)

K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5, 16250 (2015).
[Crossref]

2014 (3)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

J. D. McKinney, “Photonics illuminates the future of radar,” Nature 507, 310–312 (2014).
[Crossref]

L. Peruzzi, “Integrated masts and EW: present and future solutions in Europe,” J. Electron. Def. 37, 24–26 (2014).

2013 (2)

T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett. 38, 1712–1714 (2013).
[Crossref]

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photon. J. 5, 1–7 (2013).

2012 (2)

K. Jung and J. Kim, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37, 2958–2960 (2012).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

2011 (1)

P. H. Zhao, “The technologies of multifunction integrated RF system,” Radar ECM 3, 9–13 (2011).

2010 (1)

L. Duan, “Intrinsic thermal noise of optical fibers due to mechanical dissipation,” Electron. Lett. 46, 1515–1516 (2010).
[Crossref]

2009 (1)

A. R. Hunt, “Use of a frequency-hopping radar for imaging and motion detection through walls,” IEEE Trans. Geosci. Remote Sens. 47, 1402–1408 (2009).
[Crossref]

2008 (1)

C. Y. Chen and P. P. Vaidyanathan, “MIMO radar ambiguity properties and optimization using frequency-hopping waveforms,” IEEE Trans. Signal Process. 56, 5926–5936 (2008).
[Crossref]

2007 (2)

A. Chenakin, “Frequency synthesis: current solutions and new trends,” Microwave J. 50, 256–260 (2007).

M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek, “Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors- I: context and application,” IEEE Trans. Circuits Syst. I 54, 1006–1017 (2007).
[Crossref]

2006 (1)

G. Krieger and M. Younis, “Impact of oscillator noise in bistatic and multistatic SAR,” IEEE Geosci. Remote Sens. Lett. 3, 424–428 (2006).
[Crossref]

2005 (1)

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

2003 (1)

W. Y. Z. Zhimin, “Effect of LFM signal flatness on pulse compression performance,” Radar Sci. Technol. 2, 100–103 (2003).

2001 (1)

A. G. Armada, “Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM),” IEEE Trans. Broadcast. 47, 153–159 (2001).
[Crossref]

1995 (1)

T. Pollet, M. Vanbladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43, 191–193 (1995).
[Crossref]

1992 (1)

K. H. Wanser, “Fundamental phase noise limit in optical fibers due to temperature fluctuations,” Electron. Lett. 28, 53–54 (1992).
[Crossref]

1990 (1)

B. G. Anderson, “Frequency switching time measurement using digital demodulation,” IEEE Trans. Instrum. Meas. 39, 353–357 (1990).
[Crossref]

Alter, J. J.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

Anderson, B. G.

B. G. Anderson, “Frequency switching time measurement using digital demodulation,” IEEE Trans. Instrum. Meas. 39, 353–357 (1990).
[Crossref]

Armada, A. G.

A. G. Armada, “Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM),” IEEE Trans. Broadcast. 47, 153–159 (2001).
[Crossref]

Baynes, F. N.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

Campbell, J.

Campbell, J. C.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Chen, C. Y.

C. Y. Chen and P. P. Vaidyanathan, “MIMO radar ambiguity properties and optimization using frequency-hopping waveforms,” IEEE Trans. Signal Process. 56, 5926–5936 (2008).
[Crossref]

Chenakin, A.

A. Chenakin, “Frequency synthesis: current solutions and new trends,” Microwave J. 50, 256–260 (2007).

Cook, C.

C. Cook, Radar Signals: An Introduction to Theory and Application (Elsevier, 2012).

Corretjer, I.

J. A. Molnar, I. Corretjer, and G. Tavik, “Integrated topside-integration of narrowband and wideband array antennas for shipboard communications,” in IEEE Military Communications Conference (IEEE, 2011), pp. 1802–1807.

Crnkovich, J. G.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

Daryoush, A. S.

de Graaf, J. W.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

DeVries, K.

L. Hoover, H. Griffith, and K. DeVries, “Low noise X-band exciter using a sapphire loaded cavity oscillator,” in IEEE International Frequency Control Symposium (IEEE, 2008), pp. 309–311.

Diddams, S. A.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett. 38, 1712–1714 (2013).
[Crossref]

Duan, L.

L. Duan, “Intrinsic thermal noise of optical fibers due to mechanical dissipation,” Electron. Lett. 46, 1515–1516 (2010).
[Crossref]

Endres, T. J.

T. J. Endres, R. B. Hall, and A. M. Lopez, “Design and analysis methods of a DDS-based synthesizer for military spaceborne applications,” in IEEE International Frequency Control Symposium (IEEE, 1994), pp. 624–632.

Evins, J. B.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

Fortier, T. M.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett. 38, 1712–1714 (2013).
[Crossref]

Fu, Y.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

Griffith, H.

L. Hoover, H. Griffith, and K. DeVries, “Low noise X-band exciter using a sapphire loaded cavity oscillator,” in IEEE International Frequency Control Symposium (IEEE, 2008), pp. 309–311.

Gulden, P.

M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek, “Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors- I: context and application,” IEEE Trans. Circuits Syst. I 54, 1006–1017 (2007).
[Crossref]

Habicht, W.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

Hagewood, S. M.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

Hall, R. B.

T. J. Endres, R. B. Hall, and A. M. Lopez, “Design and analysis methods of a DDS-based synthesizer for military spaceborne applications,” in IEEE International Frequency Control Symposium (IEEE, 1994), pp. 624–632.

Hati, A.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett. 38, 1712–1714 (2013).
[Crossref]

Heo, M. S.

D. Kwon, C. G. Jeon, J. Shin, M. S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7, 40917 (2017).
[Crossref]

Hilterbrick, C. L.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

Hinkley, N.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

Hoover, L.

L. Hoover, H. Griffith, and K. DeVries, “Low noise X-band exciter using a sapphire loaded cavity oscillator,” in IEEE International Frequency Control Symposium (IEEE, 2008), pp. 309–311.

Hrin, G. P.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

Hunt, A. R.

A. R. Hunt, “Use of a frequency-hopping radar for imaging and motion detection through walls,” IEEE Trans. Geosci. Remote Sens. 47, 1402–1408 (2009).
[Crossref]

Ishibashi, T.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

Jamil, M.

M. Jamil, H.-J. Zepernick, and M. I. Pettersson, “On integrated radar and communication systems using Oppermann sequences,” in IEEE Military Communications Conference (IEEE, 2008), pp. 1–6.

Jankovic, M.

M. Jankovic, “Phase noise in microwave oscillators and amplifiers,” Ph.D. dissertation (University of Colorado, 2010).

Jeon, C. G.

D. Kwon, C. G. Jeon, J. Shin, M. S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7, 40917 (2017).
[Crossref]

Jung, K.

K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5, 16250 (2015).
[Crossref]

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photon. J. 5, 1–7 (2013).

K. Jung and J. Kim, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37, 2958–2960 (2012).
[Crossref]

Kim, J.

D. Kwon, C. G. Jeon, J. Shin, M. S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7, 40917 (2017).
[Crossref]

K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5, 16250 (2015).
[Crossref]

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photon. J. 5, 1–7 (2013).

K. Jung and J. Kim, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Opt. Lett. 37, 2958–2960 (2012).
[Crossref]

D. Kwon and J. Kim, “All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10−14-level frequency instability and 1-fs-level jitter over 1-s,” Opt. Lett.309718 (to be published).

Krieger, G.

G. Krieger and M. Younis, “Impact of oscillator noise in bistatic and multistatic SAR,” IEEE Geosci. Remote Sens. Lett. 3, 424–428 (2006).
[Crossref]

Kucy, K.

A. Lewandowski, K. Kucy, and D. Startek, “High-speed DDS-based generator of pulses with an arbitrary frequency modulation,” in International Conference on Microwaves, Radar & Wireless Communications (IEEE, 2006), pp. 125–128.

Kwon, D.

D. Kwon, C. G. Jeon, J. Shin, M. S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7, 40917 (2017).
[Crossref]

D. Kwon and J. Kim, “All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10−14-level frequency instability and 1-fs-level jitter over 1-s,” Opt. Lett.309718 (to be published).

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Leeson, D. B.

D. B. Leeson, “Oscillator phase noise: a 50-year review,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1208–1225 (2016).
[Crossref]

Lessin, S. A.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

Lewandowski, A.

A. Lewandowski, K. Kucy, and D. Startek, “High-speed DDS-based generator of pulses with an arbitrary frequency modulation,” in International Conference on Microwaves, Radar & Wireless Communications (IEEE, 2006), pp. 125–128.

Lopez, A. M.

T. J. Endres, R. B. Hall, and A. M. Lopez, “Design and analysis methods of a DDS-based synthesizer for military spaceborne applications,” in IEEE International Frequency Control Symposium (IEEE, 1994), pp. 624–632.

Ludlow, A. D.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

McKinney, J. D.

J. D. McKinney, “Photonics illuminates the future of radar,” Nature 507, 310–312 (2014).
[Crossref]

Merrill, I. S.

I. S. Merrill, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).

Metcalf, A. J.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

Moeneclaey, M.

T. Pollet, M. Vanbladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43, 191–193 (1995).
[Crossref]

Molnar, J. A.

J. A. Molnar, I. Corretjer, and G. Tavik, “Integrated topside-integration of narrowband and wideband array antennas for shipboard communications,” in IEEE Military Communications Conference (IEEE, 2011), pp. 1802–1807.

Nelson, C.

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Park, S. E.

D. Kwon, C. G. Jeon, J. Shin, M. S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7, 40917 (2017).
[Crossref]

Peruzzi, L.

L. Peruzzi, “Integrated masts and EW: present and future solutions in Europe,” J. Electron. Def. 37, 24–26 (2014).

Pettersson, M. I.

M. Jamil, H.-J. Zepernick, and M. I. Pettersson, “On integrated radar and communication systems using Oppermann sequences,” in IEEE Military Communications Conference (IEEE, 2008), pp. 1–6.

Pichler, M.

M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek, “Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors- I: context and application,” IEEE Trans. Circuits Syst. I 54, 1006–1017 (2007).
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Poddar, A. K.

Poisel, R. A.

R. A. Poisel, Introduction to Communication Electronic Warfare Systems (Artech House, 2008).

Pollet, T.

T. Pollet, M. Vanbladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43, 191–193 (1995).
[Crossref]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Quinlan, F.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

T. M. Fortier, F. Quinlan, A. Hati, C. Nelson, J. A. Taylor, Y. Fu, J. Campbell, and S. A. Diddams, “Photonic microwave generation with high-power photodiodes,” Opt. Lett. 38, 1712–1714 (2013).
[Crossref]

Reichardt, L.

Y. L. Sit, C. Sturm, L. Reichardt, T. Zwick, and W. Wiesbeck, “The OFDM joint radar-communication system: an overview,” in 3rd International Conference on Advances in Satellite and Space Communications (2011), pp. 69–74.

Rohde, U. L.

Rolland, A.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

Seisenberger, C.

M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek, “Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors- I: context and application,” IEEE Trans. Circuits Syst. I 54, 1006–1017 (2007).
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Shimizu, M.

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

Shin, J.

D. Kwon, C. G. Jeon, J. Shin, M. S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7, 40917 (2017).
[Crossref]

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photon. J. 5, 1–7 (2013).

Sit, Y. L.

Y. L. Sit, C. Sturm, L. Reichardt, T. Zwick, and W. Wiesbeck, “The OFDM joint radar-communication system: an overview,” in 3rd International Conference on Advances in Satellite and Space Communications (2011), pp. 69–74.

Skolnik, M. I.

M. I. Skolnik, Radar Handbook (McGraw-Hill, 2008).

Song, Y.

D. Kwon, C. G. Jeon, J. Shin, M. S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7, 40917 (2017).
[Crossref]

Startek, D.

A. Lewandowski, K. Kucy, and D. Startek, “High-speed DDS-based generator of pulses with an arbitrary frequency modulation,” in International Conference on Microwaves, Radar & Wireless Communications (IEEE, 2006), pp. 125–128.

Stelzer, A.

M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek, “Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors- I: context and application,” IEEE Trans. Circuits Syst. I 54, 1006–1017 (2007).
[Crossref]

Sturm, C.

Y. L. Sit, C. Sturm, L. Reichardt, T. Zwick, and W. Wiesbeck, “The OFDM joint radar-communication system: an overview,” in 3rd International Conference on Advances in Satellite and Space Communications (2011), pp. 69–74.

C. Sturm, T. Zwick, and W. Wiesbeck, “An OFDM system concept for joint radar and communications operations,” in IEEE Vehicular Technology Conference (IEEE, 2009), pp. 1–5.

Sun, T.

Tavik, G.

J. A. Molnar, I. Corretjer, and G. Tavik, “Integrated topside-integration of narrowband and wideband array antennas for shipboard communications,” in IEEE Military Communications Conference (IEEE, 2011), pp. 1802–1807.

Tavik, G. C.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

Taylor, J.

J. Taylor, “Effects of crystal reference oscillator phase noise in a vibratory environment,” (Motorola, SOTAS Engineering Development Section, Radar Operations, 1980).

Taylor, J. A.

Vaidyanathan, P. P.

C. Y. Chen and P. P. Vaidyanathan, “MIMO radar ambiguity properties and optimization using frequency-hopping waveforms,” IEEE Trans. Signal Process. 56, 5926–5936 (2008).
[Crossref]

Vanbladel, M.

T. Pollet, M. Vanbladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43, 191–193 (1995).
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Vig, J. R.

J. R. Vig, “Introduction to quartz frequency standards,” (Army Research Laboratory Electronics and Power Sources Directorate, 1992).

Vossiek, M.

M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek, “Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors- I: context and application,” IEEE Trans. Circuits Syst. I 54, 1006–1017 (2007).
[Crossref]

Wanser, K. H.

K. H. Wanser, “Fundamental phase noise limit in optical fibers due to temperature fluctuations,” Electron. Lett. 28, 53–54 (1992).
[Crossref]

Wiesbeck, W.

C. Sturm, T. Zwick, and W. Wiesbeck, “An OFDM system concept for joint radar and communications operations,” in IEEE Vehicular Technology Conference (IEEE, 2009), pp. 1–5.

Y. L. Sit, C. Sturm, L. Reichardt, T. Zwick, and W. Wiesbeck, “The OFDM joint radar-communication system: an overview,” in 3rd International Conference on Advances in Satellite and Space Communications (2011), pp. 69–74.

Wu, D. C.

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

Younis, M.

G. Krieger and M. Younis, “Impact of oscillator noise in bistatic and multistatic SAR,” IEEE Geosci. Remote Sens. Lett. 3, 424–428 (2006).
[Crossref]

Zepernick, H.-J.

M. Jamil, H.-J. Zepernick, and M. I. Pettersson, “On integrated radar and communication systems using Oppermann sequences,” in IEEE Military Communications Conference (IEEE, 2008), pp. 1–6.

Zhang, L.

Zhao, P. H.

P. H. Zhao, “The technologies of multifunction integrated RF system,” Radar ECM 3, 9–13 (2011).

Zhimin, W. Y. Z.

W. Y. Z. Zhimin, “Effect of LFM signal flatness on pulse compression performance,” Radar Sci. Technol. 2, 100–103 (2003).

Zwick, T.

C. Sturm, T. Zwick, and W. Wiesbeck, “An OFDM system concept for joint radar and communications operations,” in IEEE Vehicular Technology Conference (IEEE, 2009), pp. 1–5.

Y. L. Sit, C. Sturm, L. Reichardt, T. Zwick, and W. Wiesbeck, “The OFDM joint radar-communication system: an overview,” in 3rd International Conference on Advances in Satellite and Space Communications (2011), pp. 69–74.

Chin. Opt. Lett. (1)

Electron. Lett. (2)

L. Duan, “Intrinsic thermal noise of optical fibers due to mechanical dissipation,” Electron. Lett. 46, 1515–1516 (2010).
[Crossref]

K. H. Wanser, “Fundamental phase noise limit in optical fibers due to temperature fluctuations,” Electron. Lett. 28, 53–54 (1992).
[Crossref]

IEEE Geosci. Remote Sens. Lett. (1)

G. Krieger and M. Younis, “Impact of oscillator noise in bistatic and multistatic SAR,” IEEE Geosci. Remote Sens. Lett. 3, 424–428 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Phase coding of RF pulses in photonics-aided frequency-agile coherent radar systems,” IEEE J. Quantum Electron. 48, 1151–1157 (2012).
[Crossref]

IEEE Photon. J. (1)

K. Jung, J. Shin, and J. Kim, “Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter,” IEEE Photon. J. 5, 1–7 (2013).

IEEE Trans. Broadcast. (1)

A. G. Armada, “Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM),” IEEE Trans. Broadcast. 47, 153–159 (2001).
[Crossref]

IEEE Trans. Circuits Syst. I (1)

M. Pichler, A. Stelzer, P. Gulden, C. Seisenberger, and M. Vossiek, “Phase-error measurement and compensation in PLL frequency synthesizers for FMCW sensors- I: context and application,” IEEE Trans. Circuits Syst. I 54, 1006–1017 (2007).
[Crossref]

IEEE Trans. Commun. (1)

T. Pollet, M. Vanbladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,” IEEE Trans. Commun. 43, 191–193 (1995).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

A. R. Hunt, “Use of a frequency-hopping radar for imaging and motion detection through walls,” IEEE Trans. Geosci. Remote Sens. 47, 1402–1408 (2009).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

B. G. Anderson, “Frequency switching time measurement using digital demodulation,” IEEE Trans. Instrum. Meas. 39, 353–357 (1990).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

G. C. Tavik, C. L. Hilterbrick, J. B. Evins, J. J. Alter, J. G. Crnkovich, J. W. de Graaf, W. Habicht, G. P. Hrin, S. A. Lessin, D. C. Wu, and S. M. Hagewood, “The advanced multifunction RF concept,” IEEE Trans. Microwave Theory Tech. 53, 1009–1020 (2005).
[Crossref]

IEEE Trans. Signal Process. (1)

C. Y. Chen and P. P. Vaidyanathan, “MIMO radar ambiguity properties and optimization using frequency-hopping waveforms,” IEEE Trans. Signal Process. 56, 5926–5936 (2008).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

D. B. Leeson, “Oscillator phase noise: a 50-year review,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1208–1225 (2016).
[Crossref]

J. Electron. Def. (1)

L. Peruzzi, “Integrated masts and EW: present and future solutions in Europe,” J. Electron. Def. 37, 24–26 (2014).

Laser Photon. Rev. (1)

T. M. Fortier, A. Rolland, F. Quinlan, F. N. Baynes, A. J. Metcalf, A. Hati, A. D. Ludlow, N. Hinkley, M. Shimizu, T. Ishibashi, J. C. Campbell, and S. A. Diddams, “Optically referenced broadband electronic synthesizer with 15 digits of resolution,” Laser Photon. Rev. 10, 780–790 (2016).
[Crossref]

Microwave J. (1)

A. Chenakin, “Frequency synthesis: current solutions and new trends,” Microwave J. 50, 256–260 (2007).

Nature (2)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

J. D. McKinney, “Photonics illuminates the future of radar,” Nature 507, 310–312 (2014).
[Crossref]

Opt. Lett. (2)

Radar ECM (1)

P. H. Zhao, “The technologies of multifunction integrated RF system,” Radar ECM 3, 9–13 (2011).

Radar Sci. Technol. (1)

W. Y. Z. Zhimin, “Effect of LFM signal flatness on pulse compression performance,” Radar Sci. Technol. 2, 100–103 (2003).

Sci. Rep. (2)

D. Kwon, C. G. Jeon, J. Shin, M. S. Heo, S. E. Park, Y. Song, and J. Kim, “Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs,” Sci. Rep. 7, 40917 (2017).
[Crossref]

K. Jung and J. Kim, “All-fibre photonic signal generator for attosecond timing and ultralow-noise microwave,” Sci. Rep. 5, 16250 (2015).
[Crossref]

Other (16)

D. Kwon and J. Kim, “All-fiber interferometer-based repetition-rate stabilization of mode-locked lasers to 10−14-level frequency instability and 1-fs-level jitter over 1-s,” Opt. Lett.309718 (to be published).

L. Hoover, H. Griffith, and K. DeVries, “Low noise X-band exciter using a sapphire loaded cavity oscillator,” in IEEE International Frequency Control Symposium (IEEE, 2008), pp. 309–311.

A. Lewandowski, K. Kucy, and D. Startek, “High-speed DDS-based generator of pulses with an arbitrary frequency modulation,” in International Conference on Microwaves, Radar & Wireless Communications (IEEE, 2006), pp. 125–128.

C. Cook, Radar Signals: An Introduction to Theory and Application (Elsevier, 2012).

M. I. Skolnik, Radar Handbook (McGraw-Hill, 2008).

D. Brandon, “Determining if a spur is related to the DDS/DAC or to some other source,” http://www.analog.com/media/en/technicaldocumentation/application-notes/131351807AN_927.pdf .

T. J. Endres, R. B. Hall, and A. M. Lopez, “Design and analysis methods of a DDS-based synthesizer for military spaceborne applications,” in IEEE International Frequency Control Symposium (IEEE, 1994), pp. 624–632.

I. S. Merrill, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).

J. R. Vig, “Introduction to quartz frequency standards,” (Army Research Laboratory Electronics and Power Sources Directorate, 1992).

J. Taylor, “Effects of crystal reference oscillator phase noise in a vibratory environment,” (Motorola, SOTAS Engineering Development Section, Radar Operations, 1980).

M. Jankovic, “Phase noise in microwave oscillators and amplifiers,” Ph.D. dissertation (University of Colorado, 2010).

C. Sturm, T. Zwick, and W. Wiesbeck, “An OFDM system concept for joint radar and communications operations,” in IEEE Vehicular Technology Conference (IEEE, 2009), pp. 1–5.

Y. L. Sit, C. Sturm, L. Reichardt, T. Zwick, and W. Wiesbeck, “The OFDM joint radar-communication system: an overview,” in 3rd International Conference on Advances in Satellite and Space Communications (2011), pp. 69–74.

R. A. Poisel, Introduction to Communication Electronic Warfare Systems (Artech House, 2008).

J. A. Molnar, I. Corretjer, and G. Tavik, “Integrated topside-integration of narrowband and wideband array antennas for shipboard communications,” in IEEE Military Communications Conference (IEEE, 2011), pp. 1802–1807.

M. Jamil, H.-J. Zepernick, and M. I. Pettersson, “On integrated radar and communication systems using Oppermann sequences,” in IEEE Military Communications Conference (IEEE, 2008), pp. 1–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Diagram of the demonstrated all-fiber-photonics-based X-band synthesizer. AOFS, acousto-optic frequency shifter; FBG, fiber Bragg grating; FRM, Faraday rotating mirror; BPD, balanced photodetector; BPF, bandpass filter; LPF, low-pass filter.
Fig. 2.
Fig. 2. Absolute SSB phase noise and integrated timing jitter of the generated microwave signals. Curve (i) [black], phase noise of the 10 GHz DRO locked to the stabilized MLL. Curve (ii) [pink], phase noise floor of the used PNA at 10 GHz carrier frequency. Curve (iii) [blue], projected phase noise at 10 GHz by an optical-domain measurement. Curve (iv) [light purple], residual noise floor of FLOM-PD synchronization. Curve (v) [green], phase noise of the 9 and 11 GHz signals from the synthesizer output. Note that the red area indicates the phase noise range of the DDS output from 10 MHz (bottom red curve) to 1 GHz (top red curve). As a result, the phase noise of the synthesizer output (9–11 GHz) lies between curve (i) (10 GHz) and curve (v) (9 and 11 GHz), indicated as the diagonal patterned area. Curve (vi), integrated timing jitter for curve (i). Curve (vii), integrated timing jitter for curve (iii). Curve (viii), integrated timing jitter for curve (v) at 9 GHz.
Fig. 3.
Fig. 3. Phase error during frequency transition and settling process. Inset, waveform captured by the oscilloscope at the moment that frequencies transit and settle.
Fig. 4.
Fig. 4. Spur suppression ratio for 50 MHz–1 GHz output range in 1.25 GHz span. Inset, the spectrum for 500 MHz output.
Fig. 5.
Fig. 5. (a) Recovered instantaneous frequency of LFM signal increased from 10.5 to 11 GHz in 500 ns. (b) Autocorrelation of the LFM signal in (a).

Metrics