Abstract

Raman spectroscopy is a versatile tool widely used for comprehensive probing of crystal information. However, generally when applied in narrow-band-gap van der Waals crystals, it is liable to form a “bug,” especially in transition-metal-dichalcogenides (TMDs). That is, several resonant Raman-scattering (RS) modes will inevitably appear in the Raman spectra with strong intensity, interfering with the desired signal of optical-phonon modes. Here, we propose cross-sectional polarized Raman scattering capable of regulating the intensity of RS modes in accordance with quasi-sinusoidal rules. Typically, for MoS2 and WS2, when the polarization vector of excited light is along the c axis of the crystal, all RS modes are nearly completely “expunged” from the Raman spectra. The mechanism is that the absorption of most TMDs with a space group of R3m for the light polarized along the c axis is infinitesimal, thus forming a small coupling intensity of electronic states excited optically and acoustic-phonon modes at point M, which in turn restrain the appearance of RS modes. The regulating strategy proposed can be applied to other van der Waals crystals so as to obtain a high signal-to-noise ratio Raman spectrum.

© 2018 Chinese Laser Press

Full Article  |  PDF Article

Corrections

Wei Zheng, Yanming Zhu, Fadi Li, and Feng Huang, "Raman spectroscopy regulation in van der Waals crystals: publisher’s note," Photon. Res. 6, 1101-1101 (2018)
https://www.osapublishing.org/prj/abstract.cfm?uri=prj-6-12-1101

17 October 2018: A correction was made to the author listing.


OSA Recommended Articles
Photonic crystals for controlling strong coupling in van der Waals materials

Rahul Gogna, Long Zhang, Zhaorong Wang, and Hui Deng
Opt. Express 27(16) 22700-22707 (2019)

Ultrafast charge transfer in a type-II MoS2-ReSe2 van der Waals heterostructure

Lu Zhang, Dawei He, Jiaqi He, Yang Fu, Ang Bian, Xiuxiu Han, Shuangyan Liu, Yongsheng Wang, and Hui Zhao
Opt. Express 27(13) 17851-17858 (2019)

Probing effect of electric field on photocarrier transfer in graphene-WS2 van der Waals heterostructures

Jiaqi He, Dawei He, Yongsheng Wang, and Hui Zhao
Opt. Express 25(3) 1949-1957 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
    [Crossref]
  2. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
    [Crossref]
  3. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
    [Crossref]
  4. W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-ultraviolet photovoltaic detector,” ACS Nano 12, 425–431 (2018).
    [Crossref]
  5. A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
    [Crossref]
  6. W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, and F. Huang, “High-crystalline 2D layered PbI2 with ultrasmooth surface: liquid-phase synthesis and application of high-speed photon detection,” Adv. Electron. Mater. 2, 1600291 (2016).
    [Crossref]
  7. M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, “Graphene and boron nitride lateral heterostructures for atomically thin circuitry,” Nature 488, 627–632 (2012).
    [Crossref]
  8. X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
    [Crossref]
  9. A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
    [Crossref]
  10. A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8, 235–246 (2013).
    [Crossref]
  11. H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012).
    [Crossref]
  12. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
    [Crossref]
  13. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
    [Crossref]
  14. K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, “Multiphonon resonant Raman scattering in MoS2,” Appl. Phys. Lett. 104, 092106 (2014).
    [Crossref]
  15. A. A. Mitioglu, P. Plochocka, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K. Maude, “Second-order resonant Raman scattering in single-layer tungsten disulfide WS2,” Phys. Rev. B 89, 245442 (2014).
    [Crossref]
  16. G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B 60, 2883–2892 (1999).
    [Crossref]
  17. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
    [Crossref]
  18. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
    [Crossref]
  19. A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143, 47–57 (2007).
    [Crossref]
  20. L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
    [Crossref]
  21. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
    [Crossref]
  22. W. Zheng, F. Li, G. Li, Y. Liang, X. Ji, F. Yang, Z. Zhang, and F. Huang, “Laser tuning in van der Waals crystals,” ACS Nano 12, 2001–2007 (2018).
    [Crossref]
  23. J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
    [Crossref]
  24. M. Cardona and G. Guntherodt, Light Scattering in Solids II (Springer, 1982).
  25. W. Zheng, R. Zheng, F. Huang, H. Wu, and F. Li, “Raman tensor of AlN bulk single crystal,” Photon. Res. 3, 38–43 (2015).
    [Crossref]
  26. C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor formalism for optically anisotropic crystals,” Phys. Rev. Lett. 116, 127401 (2016).
    [Crossref]
  27. C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor elements of β-Ga2O3,” Sci. Rep. 6, 35964 (2016).
    [Crossref]
  28. W. Zheng, J. Yan, F. Li, and F. Huang, “Elucidation of ‘phase difference’ in Raman tensor formalism,” Photon. Res. 6, 709–712 (2018).
    [Crossref]
  29. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).
    [Crossref]
  30. S. M. Heald and E. A. Stern, “Anisotropic X-ray absorption in layered compounds,” Phys. Rev. B 16, 5549–5559 (1977).
    [Crossref]

2018 (3)

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-ultraviolet photovoltaic detector,” ACS Nano 12, 425–431 (2018).
[Crossref]

W. Zheng, F. Li, G. Li, Y. Liang, X. Ji, F. Yang, Z. Zhang, and F. Huang, “Laser tuning in van der Waals crystals,” ACS Nano 12, 2001–2007 (2018).
[Crossref]

W. Zheng, J. Yan, F. Li, and F. Huang, “Elucidation of ‘phase difference’ in Raman tensor formalism,” Photon. Res. 6, 709–712 (2018).
[Crossref]

2016 (3)

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor formalism for optically anisotropic crystals,” Phys. Rev. Lett. 116, 127401 (2016).
[Crossref]

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor elements of β-Ga2O3,” Sci. Rep. 6, 35964 (2016).
[Crossref]

W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, and F. Huang, “High-crystalline 2D layered PbI2 with ultrasmooth surface: liquid-phase synthesis and application of high-speed photon detection,” Adv. Electron. Mater. 2, 1600291 (2016).
[Crossref]

2015 (2)

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

W. Zheng, R. Zheng, F. Huang, H. Wu, and F. Li, “Raman tensor of AlN bulk single crystal,” Photon. Res. 3, 38–43 (2015).
[Crossref]

2014 (4)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, “Multiphonon resonant Raman scattering in MoS2,” Appl. Phys. Lett. 104, 092106 (2014).
[Crossref]

A. A. Mitioglu, P. Plochocka, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K. Maude, “Second-order resonant Raman scattering in single-layer tungsten disulfide WS2,” Phys. Rev. B 89, 245442 (2014).
[Crossref]

2013 (5)

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8, 235–246 (2013).
[Crossref]

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

2012 (3)

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, “Graphene and boron nitride lateral heterostructures for atomically thin circuitry,” Nature 488, 627–632 (2012).
[Crossref]

2011 (1)

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

2010 (1)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

2009 (1)

C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
[Crossref]

2007 (1)

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143, 47–57 (2007).
[Crossref]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

1999 (1)

G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B 60, 2883–2892 (1999).
[Crossref]

1996 (1)

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

1977 (1)

S. M. Heald and E. A. Stern, “Anisotropic X-ray absorption in layered compounds,” Phys. Rev. B 16, 5549–5559 (1977).
[Crossref]

1976 (1)

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).
[Crossref]

Achete, C. A.

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Ajayan, P. M.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Anghel, S.

A. A. Mitioglu, P. Plochocka, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K. Maude, “Second-order resonant Raman scattering in single-layer tungsten disulfide WS2,” Phys. Rev. B 89, 245442 (2014).
[Crossref]

Babinski, A.

K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, “Multiphonon resonant Raman scattering in MoS2,” Appl. Phys. Lett. 104, 092106 (2014).
[Crossref]

Baillargeat, D.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012).
[Crossref]

Basko, D. M.

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8, 235–246 (2013).
[Crossref]

C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
[Crossref]

Berkdemir, A.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Botello-Méndez, A. R.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Brown, L.

M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, “Graphene and boron nitride lateral heterostructures for atomically thin circuitry,” Nature 488, 627–632 (2012).
[Crossref]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Cancado, L. G.

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Capaz, R. B.

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Cardona, M.

M. Cardona and G. Guntherodt, Light Scattering in Solids II (Springer, 1982).

Casiraghi, C.

C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Charlier, J.-C.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Chia, C.-I.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Chu, L.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Crespi, V. H.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Deligeorgis, G.

A. A. Mitioglu, P. Plochocka, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K. Maude, “Second-order resonant Raman scattering in single-layer tungsten disulfide WS2,” Phys. Rev. B 89, 245442 (2014).
[Crossref]

Dresselhaus, G.

G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B 60, 2883–2892 (1999).
[Crossref]

Dresselhaus, M. S.

G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B 60, 2883–2892 (1999).
[Crossref]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Eda, G.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Edwin, T. H. T.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012).
[Crossref]

Elías, A. L.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Fasoli, A.

C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
[Crossref]

Faugeras, C.

K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, “Multiphonon resonant Raman scattering in MoS2,” Appl. Phys. Lett. 104, 092106 (2014).
[Crossref]

Ferrari, A. C.

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8, 235–246 (2013).
[Crossref]

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
[Crossref]

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143, 47–57 (2007).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Frey, G. L.

G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B 60, 2883–2892 (1999).
[Crossref]

Geim, A. K.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Georgi, C.

C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
[Crossref]

Ghorannevis, Z.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Golasa, K.

K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, “Multiphonon resonant Raman scattering in MoS2,” Appl. Phys. Lett. 104, 092106 (2014).
[Crossref]

Gong, Y.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Grigorieva, I. V.

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

Grundmann, M.

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor formalism for optically anisotropic crystals,” Phys. Rev. Lett. 116, 127401 (2016).
[Crossref]

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor elements of β-Ga2O3,” Sci. Rep. 6, 35964 (2016).
[Crossref]

Grzeszczyk, M.

K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, “Multiphonon resonant Raman scattering in MoS2,” Appl. Phys. Lett. 104, 092106 (2014).
[Crossref]

Guntherodt, G.

M. Cardona and G. Guntherodt, Light Scattering in Solids II (Springer, 1982).

Gutiérrez, H. R.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Hartschuh, A.

C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
[Crossref]

Havener, R. W.

M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, “Graphene and boron nitride lateral heterostructures for atomically thin circuitry,” Nature 488, 627–632 (2012).
[Crossref]

He, J.

W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, and F. Huang, “High-crystalline 2D layered PbI2 with ultrasmooth surface: liquid-phase synthesis and application of high-speed photon detection,” Adv. Electron. Mater. 2, 1600291 (2016).
[Crossref]

Heald, S. M.

S. M. Heald and E. A. Stern, “Anisotropic X-ray absorption in layered compounds,” Phys. Rev. B 16, 5549–5559 (1977).
[Crossref]

Heinz, T. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Hone, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Huang, F.

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-ultraviolet photovoltaic detector,” ACS Nano 12, 425–431 (2018).
[Crossref]

W. Zheng, J. Yan, F. Li, and F. Huang, “Elucidation of ‘phase difference’ in Raman tensor formalism,” Photon. Res. 6, 709–712 (2018).
[Crossref]

W. Zheng, F. Li, G. Li, Y. Liang, X. Ji, F. Yang, Z. Zhang, and F. Huang, “Laser tuning in van der Waals crystals,” ACS Nano 12, 2001–2007 (2018).
[Crossref]

W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, and F. Huang, “High-crystalline 2D layered PbI2 with ultrasmooth surface: liquid-phase synthesis and application of high-speed photon detection,” Adv. Electron. Mater. 2, 1600291 (2016).
[Crossref]

W. Zheng, R. Zheng, F. Huang, H. Wu, and F. Li, “Raman tensor of AlN bulk single crystal,” Photon. Res. 3, 38–43 (2015).
[Crossref]

Huang, P. Y.

M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, “Graphene and boron nitride lateral heterostructures for atomically thin circuitry,” Nature 488, 627–632 (2012).
[Crossref]

Ji, X.

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-ultraviolet photovoltaic detector,” ACS Nano 12, 425–431 (2018).
[Crossref]

W. Zheng, F. Li, G. Li, Y. Liang, X. Ji, F. Yang, Z. Zhang, and F. Huang, “Laser tuning in van der Waals crystals,” ACS Nano 12, 2001–2007 (2018).
[Crossref]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Jiang, D.-S.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Jorio, A.

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kang, J.

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

Kim, C.-J.

M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, “Graphene and boron nitride lateral heterostructures for atomically thin circuitry,” Nature 488, 627–632 (2012).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Kloc, C.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Kranert, C.

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor formalism for optically anisotropic crystals,” Phys. Rev. Lett. 116, 127401 (2016).
[Crossref]

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor elements of β-Ga2O3,” Sci. Rep. 6, 35964 (2016).
[Crossref]

Kulmala, T. S.

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Kulyuk, L.

A. A. Mitioglu, P. Plochocka, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K. Maude, “Second-order resonant Raman scattering in single-layer tungsten disulfide WS2,” Phys. Rev. B 89, 245442 (2014).
[Crossref]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Lee, C.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Lei, S.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Leszczynski, P.

K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, “Multiphonon resonant Raman scattering in MoS2,” Appl. Phys. Lett. 104, 092106 (2014).
[Crossref]

Levendorf, M. P.

M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, “Graphene and boron nitride lateral heterostructures for atomically thin circuitry,” Nature 488, 627–632 (2012).
[Crossref]

Li, F.

Li, G.

W. Zheng, F. Li, G. Li, Y. Liang, X. Ji, F. Yang, Z. Zhang, and F. Huang, “Laser tuning in van der Waals crystals,” ACS Nano 12, 2001–2007 (2018).
[Crossref]

Li, H.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012).
[Crossref]

Li, J.

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

Liang, Y.

W. Zheng, F. Li, G. Li, Y. Liang, X. Ji, F. Yang, Z. Zhang, and F. Huang, “Laser tuning in van der Waals crystals,” ACS Nano 12, 2001–2007 (2018).
[Crossref]

Lin, J.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Lin, R.

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-ultraviolet photovoltaic detector,” ACS Nano 12, 425–431 (2018).
[Crossref]

W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, and F. Huang, “High-crystalline 2D layered PbI2 with ultrasmooth surface: liquid-phase synthesis and application of high-speed photon detection,” Adv. Electron. Mater. 2, 1600291 (2016).
[Crossref]

Lin, Z.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Liu, Z.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Lombardo, A.

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

López-Urías, F.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Lou, J.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Mak, K. F.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Martins Ferreira, E. H.

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Matthews, M. J.

G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B 60, 2883–2892 (1999).
[Crossref]

Maude, D. K.

A. A. Mitioglu, P. Plochocka, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K. Maude, “Second-order resonant Raman scattering in single-layer tungsten disulfide WS2,” Phys. Rev. B 89, 245442 (2014).
[Crossref]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Mitioglu, A. A.

A. A. Mitioglu, P. Plochocka, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K. Maude, “Second-order resonant Raman scattering in single-layer tungsten disulfide WS2,” Phys. Rev. B 89, 245442 (2014).
[Crossref]

Monkhorst, H. J.

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).
[Crossref]

Moutinho, M. V. O.

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Muller, D. A.

M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, “Graphene and boron nitride lateral heterostructures for atomically thin circuitry,” Nature 488, 627–632 (2012).
[Crossref]

Nicolet, A. A. L.

K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, “Multiphonon resonant Raman scattering in MoS2,” Appl. Phys. Lett. 104, 092106 (2014).
[Crossref]

Novoselov, K. S.

C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Olivier, A.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012).
[Crossref]

Pack, J. D.

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).
[Crossref]

Pantelides, S. T.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Park, J.

M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, “Graphene and boron nitride lateral heterostructures for atomically thin circuitry,” Nature 488, 627–632 (2012).
[Crossref]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

Perea-López, N.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Piscanec, S.

C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Plochocka, P.

A. A. Mitioglu, P. Plochocka, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K. Maude, “Second-order resonant Raman scattering in single-layer tungsten disulfide WS2,” Phys. Rev. B 89, 245442 (2014).
[Crossref]

Potemski, M.

K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, “Multiphonon resonant Raman scattering in MoS2,” Appl. Phys. Lett. 104, 092106 (2014).
[Crossref]

Qian, H.

C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
[Crossref]

Qiao, X.-F.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Ran, J.

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-ultraviolet photovoltaic detector,” ACS Nano 12, 425–431 (2018).
[Crossref]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Schmidt-Grund, R.

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor formalism for optically anisotropic crystals,” Phys. Rev. Lett. 116, 127401 (2016).
[Crossref]

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor elements of β-Ga2O3,” Sci. Rep. 6, 35964 (2016).
[Crossref]

Shan, J.

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

Shi, G.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Shi, W.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Stavale, F.

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

Stern, E. A.

S. M. Heald and E. A. Stern, “Anisotropic X-ray absorption in layered compounds,” Phys. Rev. B 16, 5549–5559 (1977).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Sturm, C.

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor elements of β-Ga2O3,” Sci. Rep. 6, 35964 (2016).
[Crossref]

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor formalism for optically anisotropic crystals,” Phys. Rev. Lett. 116, 127401 (2016).
[Crossref]

Tan, P.-H.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Tay, B. K.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012).
[Crossref]

Tenne, R.

G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B 60, 2883–2892 (1999).
[Crossref]

Terrones, H.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Terrones, M.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Toh, M.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Tongay, S.

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

Vajtai, R.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Wang, B.

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

Wang, X.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Wu, H.

Wu, J.

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

Wu, J.-B.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Wysmolek, A.

K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, “Multiphonon resonant Raman scattering in MoS2,” Appl. Phys. Lett. 104, 092106 (2014).
[Crossref]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Xu, K.

W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, and F. Huang, “High-crystalline 2D layered PbI2 with ultrasmooth surface: liquid-phase synthesis and application of high-speed photon detection,” Adv. Electron. Mater. 2, 1600291 (2016).
[Crossref]

Yakobson, B. I.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Yan, J.

Yang, F.

W. Zheng, F. Li, G. Li, Y. Liang, X. Ji, F. Yang, Z. Zhang, and F. Huang, “Laser tuning in van der Waals crystals,” ACS Nano 12, 2001–2007 (2018).
[Crossref]

Yap, C. C. R.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012).
[Crossref]

Ye, G.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Zhang, Q.

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012).
[Crossref]

Zhang, X.

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Zhang, Z.

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-ultraviolet photovoltaic detector,” ACS Nano 12, 425–431 (2018).
[Crossref]

W. Zheng, F. Li, G. Li, Y. Liang, X. Ji, F. Yang, Z. Zhang, and F. Huang, “Laser tuning in van der Waals crystals,” ACS Nano 12, 2001–2007 (2018).
[Crossref]

W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, and F. Huang, “High-crystalline 2D layered PbI2 with ultrasmooth surface: liquid-phase synthesis and application of high-speed photon detection,” Adv. Electron. Mater. 2, 1600291 (2016).
[Crossref]

Zhao, W.

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

Zheng, R.

Zheng, W.

W. Zheng, J. Yan, F. Li, and F. Huang, “Elucidation of ‘phase difference’ in Raman tensor formalism,” Photon. Res. 6, 709–712 (2018).
[Crossref]

W. Zheng, F. Li, G. Li, Y. Liang, X. Ji, F. Yang, Z. Zhang, and F. Huang, “Laser tuning in van der Waals crystals,” ACS Nano 12, 2001–2007 (2018).
[Crossref]

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-ultraviolet photovoltaic detector,” ACS Nano 12, 425–431 (2018).
[Crossref]

W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, and F. Huang, “High-crystalline 2D layered PbI2 with ultrasmooth surface: liquid-phase synthesis and application of high-speed photon detection,” Adv. Electron. Mater. 2, 1600291 (2016).
[Crossref]

W. Zheng, R. Zheng, F. Huang, H. Wu, and F. Li, “Raman tensor of AlN bulk single crystal,” Photon. Res. 3, 38–43 (2015).
[Crossref]

Zhou, J.

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

Zhou, W.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Zou, X.

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

ACS Nano (3)

W. Zheng, R. Lin, J. Ran, Z. Zhang, X. Ji, and F. Huang, “Vacuum-ultraviolet photovoltaic detector,” ACS Nano 12, 425–431 (2018).
[Crossref]

W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano 7, 791–797 (2013).
[Crossref]

W. Zheng, F. Li, G. Li, Y. Liang, X. Ji, F. Yang, Z. Zhang, and F. Huang, “Laser tuning in van der Waals crystals,” ACS Nano 12, 2001–2007 (2018).
[Crossref]

Adv. Electron. Mater. (1)

W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, and F. Huang, “High-crystalline 2D layered PbI2 with ultrasmooth surface: liquid-phase synthesis and application of high-speed photon detection,” Adv. Electron. Mater. 2, 1600291 (2016).
[Crossref]

Adv. Funct. Mater. (1)

H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: evolution of Raman scattering,” Adv. Funct. Mater. 22, 1385–1390 (2012).
[Crossref]

Appl. Phys. Lett. (2)

K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A. A. L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński, “Multiphonon resonant Raman scattering in MoS2,” Appl. Phys. Lett. 104, 092106 (2014).
[Crossref]

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett. 102, 012111 (2013).
[Crossref]

Chem. Soc. Rev. (1)

X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, “Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev. 44, 2757–2785 (2015).
[Crossref]

Nano Lett. (2)

L. G. Cancado, A. Jorio, E. H. Martins Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 3190–3196 (2011).
[Crossref]

C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “Raman spectroscopy of graphene edges,” Nano Lett. 9, 1433–1441 (2009).
[Crossref]

Nat. Mater. (1)

Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, “Vertical and in-plane heterostructures from WS2/MoS2 monolayers,” Nat. Mater. 13, 1135–1142 (2014).
[Crossref]

Nat. Nanotechnol. (2)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7, 699–712 (2012).
[Crossref]

A. C. Ferrari and D. M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8, 235–246 (2013).
[Crossref]

Nat. Photonics (1)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8, 899–907 (2014).
[Crossref]

Nature (2)

A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[Crossref]

M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, “Graphene and boron nitride lateral heterostructures for atomically thin circuitry,” Nature 488, 627–632 (2012).
[Crossref]

Photon. Res. (2)

Phys. Rev. B (4)

H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B 13, 5188–5192 (1976).
[Crossref]

S. M. Heald and E. A. Stern, “Anisotropic X-ray absorption in layered compounds,” Phys. Rev. B 16, 5549–5559 (1977).
[Crossref]

A. A. Mitioglu, P. Plochocka, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K. Maude, “Second-order resonant Raman scattering in single-layer tungsten disulfide WS2,” Phys. Rev. B 89, 245442 (2014).
[Crossref]

G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, “Raman and resonance Raman investigation of MoS2 nanoparticles,” Phys. Rev. B 60, 2883–2892 (1999).
[Crossref]

Phys. Rev. Lett. (4)

K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
[Crossref]

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor formalism for optically anisotropic crystals,” Phys. Rev. Lett. 116, 127401 (2016).
[Crossref]

Sci. Rep. (2)

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor elements of β-Ga2O3,” Sci. Rep. 6, 35964 (2016).
[Crossref]

A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Charlier, H. Terrones, and M. Terrones, “Identification of individual and few layers of WS2 using Raman spectroscopy,” Sci. Rep. 3, 1755 (2013).
[Crossref]

Solid State Commun. (1)

A. C. Ferrari, “Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Commun. 143, 47–57 (2007).
[Crossref]

Other (1)

M. Cardona and G. Guntherodt, Light Scattering in Solids II (Springer, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Typical Raman spectra of MoS 2 and WS 2 scattering from in-plane ( e i c axis). (a) Typical Raman-scattering spectrum of MoS 2 excited by a 633 nm laser, and a large number of LA(M)-related RS modes are excited. All recoded modes in MoS 2 Raman spectroscopy are identified as 179 [ A 1 g ( M ) + LA ( M ) ] , 383 [ E 2 g 1 ( Γ ) ] , 409 [ A 1 g ( Γ ) ] , 421 [ B 2 g 2 + E 1 u 2 ( Γ A ) ] , 454 [2LA(M)], 465 [ A 2 u ( Γ ) ] , 529 [ E 1 g ( M ) + LA ( M ) ] , 572 [ 2 E 1 g ( Γ ) ] , 600 [ E 2 g 1 ( M ) + LA ( M ) ] , 644 [ A 1 g ( M ) + LA ( M ) ] , 767 (unknown), 785 (unknown), and 824 (unknown) cm 1 [14,16]. (b) Typical Raman-scattering spectrum of WS 2 excited by a 532 nm laser, and the recoded modes are identified as LA(M) at 175    cm 1 , E 2 g 1 ( M ) LA ( M ) at 195    cm 1 , A 1 g ( M ) LA ( M ) at 233    cm 1 , 2 LA ( M ) 2 E 2 g 2 ( M ) at 298    cm 1 , E 1 g ( M ) at 323    cm 1 , 2LA(M) at 351    cm 1 , A 1 g ( Γ ) at 421    cm 1 , E 2 g 1 ( M ) + LA ( M ) at 523    cm 1 , A 1 g ( M ) + LA ( M ) at 585    cm 1 , and 4LA(M) at 701    cm 1 [9].
Fig. 2.
Fig. 2. Normalized optical absorption coefficients of the cross section ( k i a axis) in (a)  MoS 2 and (b)  WS 2 calculated via first principles, where ordinate θ is the angle between the incident light polarized vector e i and the c axis of the crystals. The absorption coefficients of the in-plane area ( k i c axis) in (c)  MoS 2 and (d)  WS 2 , where the ordinate φ represents the angle between the incident light e i and the c axis.
Fig. 3.
Fig. 3. Improved Raman spectra of (a)  MoS 2 and (b)  WS 2 scattering from out-of-plane polarization ( e i c axis). Compared to Fig. 1, the RS modes here are fully suppressed and the high SNR of the OP mode is highlighted.
Fig. 4.
Fig. 4. The cross-sectional angle-dependent polarized (CAP) Raman spectra of (a)  MoS 2 and (b)  WS 2 , where the ordinate θ is defined as the angle between the incident light polarization e i and the c axis, and the in-plane angle-dependent polarized (IAP) Raman spectra of (c)  MoS 2 and (d)  WS 2 , where the ordinate φ is defined as the angle between the incident light polarization e i and the a axis.
Fig. 5.
Fig. 5. Raman intensities of OP and RS modes extracted from Figs. 4(a) and 4(b) via Lorentzian fitting. (a) and (b) display angle-dependent intensities of A 1 g OP modes in MoS 2 and WS 2 , respectively, and reveal a similar changing rule in MoS 2 and WS 2 . The red line gives the corresponding fitting results based on the Raman selection rule, i.e., Eq. (1). (c) and (d) show the angle-dependent intensities of resonant scattering modes in layered MoS 2 and WS 2 , respectively. All modes appear with the same θ angle dependence: when θ = ( n + 1 / 2 ) π , the scattering intensity reaches the highest value; while θ = n π , the value approximates to zero.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R [ A 1 g ] = [ a a b e i ϕ ] ,
e i = e s = ( sin θ 0 cos θ ) .
I A 1 g ( θ ) | a | 2 sin 4 θ + | c | 2 cos 4 θ + 1 2 | a | | c | sin 2 ( 2 θ ) cos ϕ ,

Metrics