Abstract

There exists an increasing demand of industrial-scale production of high-purity ligand-free nanoparticles due to the continuous development of biomedicine, catalysis, and energy applications. In this contribution, a simultaneous spatial and temporal focusing (SSTF) setup is first proposed for increasing nanoparticle productivity of the eco-friendly pulsed laser ablation in liquids (PLAL) technique. In spite of the fact that femtosecond pulses have proved to achieve higher ablation rates in air than picosecond pulses, in PLAL this is reversed due to the nonlinear energy losses in the liquid. However, thanks to the incorporation of SSTF, the energy delivered to the target is increased up to 70%, which leads to a nanoparticle production increase of a 2.4 factor. This breaks a barrier toward the employment of femtosecond lasers in high-efficiency PLAL.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous spatial and temporal focusing for tissue ablation

Erica Block, Michael Greco, Dawn Vitek, Omid Masihzadeh, David A. Ammar, Malik Y. Kahook, Naresh Mandava, Charles Durfee, and Jeff Squier
Biomed. Opt. Express 4(6) 831-841 (2013)

Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield

Romuald Intartaglia, Komal Bagga, and Fernando Brandi
Opt. Express 22(3) 3117-3127 (2014)

Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi
Opt. Mater. Express 2(5) 510-518 (2012)

References

  • View by:
  • |
  • |
  • |

  1. E. Serrano, G. Rus, and J. García-Martínez, “Nanotechnology for sustainable energy,” Renew. Sustain. Energy Rev. 13, 2373–2384 (2009).
    [Crossref]
  2. X. Qu, P. J. J. Alvarez, and Q. Li, “Applications of nanotechnology in water and wastewater treatment,” Water Res. 47, 3931–3946 (2013).
    [Crossref]
  3. A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renew. Sustain. Energy Rev. 43, 584–598 (2015).
    [Crossref]
  4. L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41, 2256–2282 (2012).
    [Crossref]
  5. D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
    [Crossref]
  6. D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117, 3990–4103 (2017).
    [Crossref]
  7. J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, “External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly,” Prog. Mater. Sci. 87, 140–220 (2017).
    [Crossref]
  8. J. Zhang, J. Claverie, M. Chaker, and D. Ma, “Colloidal metal nanoparticles prepared by laser ablation and their applications,” ChemPhysChem 18, 986–1006 (2017).
    [Crossref]
  9. H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
    [Crossref]
  10. G. Kalyuzhny and R. W. Murray, “Ligand effects on optical properties of CdSe nanocrystals,” J. Phys. Chem. B 109, 7012–7021 (2005).
    [Crossref]
  11. S. Petersen and S. Barcikowski, “Conjugation efficiency of laser-based bioconjugation of gold nanoparticles with nucleic acids,” J. Phys. Chem. C 113, 19830–19835 (2009).
    [Crossref]
  12. R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda, O. Mendoza-Yero, J. Lancis, J. E. Juliá, and G. Mínguez-Vega, “Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation,” ChemPhysChem 18, 1055–1060 (2017).
    [Crossref]
  13. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
    [Crossref]
  14. G. González-Rubio, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers,” Acc. Chem. Res. 49, 678–686 (2016).
    [Crossref]
  15. P. Wagener and S. Barcikowski, “Laser fragmentation of organic microparticles into colloidal nanoparticles in a free liquid jet,” Appl. Phys. A 101, 435–439 (2010).
    [Crossref]
  16. C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging,” ACS Omega 3, 2735–2742 (2018).
    [Crossref]
  17. A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids,” J. Phys. Chem. C 115, 5108–5114 (2011).
    [Crossref]
  18. J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
    [Crossref]
  19. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104, 9111–9117 (2000).
    [Crossref]
  20. V. Amendola, S. Polizzi, and M. Meneghetti, “Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization,” Langmuir 23, 6766–6770 (2007).
    [Crossref]
  21. R. Streubel, S. Barcikowski, and B. Gökce, “Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids,” Opt. Lett. 41, 1486–1489 (2016).
    [Crossref]
  22. A. V. Kabashin and M. Meunier, “Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,” J. Appl. Phys. 94, 7941–7943 (2003).
    [Crossref]
  23. T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206, 314–320 (2003).
    [Crossref]
  24. G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
    [Crossref]
  25. R. Lachaine, É. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
    [Crossref]
  26. V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
    [Crossref]
  27. L. Shi, B. Iwan, R. Nicolas, Q. Ripault, J. R. C. Andrade, S. Han, H. Kim, W. Boutu, D. Franz, T. Heidenblut, C. Reinhardt, B. Bastiaens, T. Nagy, I. Babushkin, U. Morgner, S.-W. Kim, G. Steinmeyer, H. Merdji, and M. Kovacev, “Self-optimization of plasmonic nanoantennas in strong femtosecond fields,” Optica 4, 1038–1043 (2017).
    [Crossref]
  28. X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
    [Crossref]
  29. A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
    [Crossref]
  30. M. A. Sobhan, M. Ams, M. J. Withford, and E. M. Goldys, “Ultrafast laser ablative generation of gold nanoparticles: the influence of pulse energy, repetition frequency and spot size,” J. Nanoparticle Res. 12, 2831–2842 (2010).
    [Crossref]
  31. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005).
    [Crossref]
  32. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468–1476 (2005).
    [Crossref]
  33. A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
    [Crossref]
  34. R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
    [Crossref]
  35. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express 18, 24673–24678 (2010).
    [Crossref]
  36. B. Tangeysh, K. M. Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]−,” J. Phys. Chem. C 117, 18719–18727 (2013).
    [Crossref]
  37. J. H. Odhner, K. M. Tibbetts, B. Tangeysh, B. B. Wayland, and R. J. Levis, “Mechanism of improved Au nanoparticle size distributions using simultaneous spatial and temporal focusing for femtosecond laser irradiation of aqueous KAuCl4,” J. Phys. Chem. C 118, 23986–23995 (2014).
    [Crossref]
  38. B. Tangeysh, K. Moore Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction,” Nano Lett. 15, 3377–3382 (2015).
    [Crossref]
  39. K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
    [Crossref]
  40. P. Wagener, A. Schwenke, B. N. Chichkov, and S. Barcikowski, “Pulsed laser ablation of zinc in tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
    [Crossref]
  41. M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20, 688–697 (2012).
    [Crossref]
  42. M. Miranda, C. L. Arnold, T. Fordell, F. Silva, B. Alonso, R. Weigand, A. L’Huillier, and H. Crespo, “Characterization of broadband few-cycle laser pulses with the d-scan technique,” Opt. Express 20, 18732–18743 (2012).
    [Crossref]
  43. T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, and J. Polte, “In situ determination of colloidal gold concentrations with UV-vis spectroscopy: limitations and perspectives,” Anal. Chem. 86, 11115–11124 (2014).
    [Crossref]
  44. T. Wagner, “ParticleSizer 1.0.7,” https://imagej.net/ParticleSizer (2016).
  45. A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).
    [Crossref]
  46. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
    [Crossref]
  47. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  48. Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407  nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
    [Crossref]
  49. C. Ma and W. Lin, “Normal dispersion effects on the nonlinear focus,” J. Opt. Soc. Am. B 33, 1055–1059 (2016).
    [Crossref]
  50. K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear-to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
    [Crossref]
  51. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
    [Crossref]
  52. W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).
    [Crossref]
  53. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
    [Crossref]

2019 (2)

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

2018 (3)

A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
[Crossref]

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging,” ACS Omega 3, 2735–2742 (2018).
[Crossref]

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

2017 (6)

D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117, 3990–4103 (2017).
[Crossref]

J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, “External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly,” Prog. Mater. Sci. 87, 140–220 (2017).
[Crossref]

J. Zhang, J. Claverie, M. Chaker, and D. Ma, “Colloidal metal nanoparticles prepared by laser ablation and their applications,” ChemPhysChem 18, 986–1006 (2017).
[Crossref]

R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda, O. Mendoza-Yero, J. Lancis, J. E. Juliá, and G. Mínguez-Vega, “Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation,” ChemPhysChem 18, 1055–1060 (2017).
[Crossref]

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

L. Shi, B. Iwan, R. Nicolas, Q. Ripault, J. R. C. Andrade, S. Han, H. Kim, W. Boutu, D. Franz, T. Heidenblut, C. Reinhardt, B. Bastiaens, T. Nagy, I. Babushkin, U. Morgner, S.-W. Kim, G. Steinmeyer, H. Merdji, and M. Kovacev, “Self-optimization of plasmonic nanoantennas in strong femtosecond fields,” Optica 4, 1038–1043 (2017).
[Crossref]

2016 (3)

2015 (3)

B. Tangeysh, K. Moore Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction,” Nano Lett. 15, 3377–3382 (2015).
[Crossref]

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renew. Sustain. Energy Rev. 43, 584–598 (2015).
[Crossref]

2014 (5)

R. Lachaine, É. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

J. H. Odhner, K. M. Tibbetts, B. Tangeysh, B. B. Wayland, and R. J. Levis, “Mechanism of improved Au nanoparticle size distributions using simultaneous spatial and temporal focusing for femtosecond laser irradiation of aqueous KAuCl4,” J. Phys. Chem. C 118, 23986–23995 (2014).
[Crossref]

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear-to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref]

T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, and J. Polte, “In situ determination of colloidal gold concentrations with UV-vis spectroscopy: limitations and perspectives,” Anal. Chem. 86, 11115–11124 (2014).
[Crossref]

2013 (2)

B. Tangeysh, K. M. Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]−,” J. Phys. Chem. C 117, 18719–18727 (2013).
[Crossref]

X. Qu, P. J. J. Alvarez, and Q. Li, “Applications of nanotechnology in water and wastewater treatment,” Water Res. 47, 3931–3946 (2013).
[Crossref]

2012 (4)

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41, 2256–2282 (2012).
[Crossref]

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20, 688–697 (2012).
[Crossref]

M. Miranda, C. L. Arnold, T. Fordell, F. Silva, B. Alonso, R. Weigand, A. L’Huillier, and H. Crespo, “Characterization of broadband few-cycle laser pulses with the d-scan technique,” Opt. Express 20, 18732–18743 (2012).
[Crossref]

2011 (1)

A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids,” J. Phys. Chem. C 115, 5108–5114 (2011).
[Crossref]

2010 (4)

P. Wagener and S. Barcikowski, “Laser fragmentation of organic microparticles into colloidal nanoparticles in a free liquid jet,” Appl. Phys. A 101, 435–439 (2010).
[Crossref]

D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing in optically transparent materials,” Opt. Express 18, 24673–24678 (2010).
[Crossref]

M. A. Sobhan, M. Ams, M. J. Withford, and E. M. Goldys, “Ultrafast laser ablative generation of gold nanoparticles: the influence of pulse energy, repetition frequency and spot size,” J. Nanoparticle Res. 12, 2831–2842 (2010).
[Crossref]

P. Wagener, A. Schwenke, B. N. Chichkov, and S. Barcikowski, “Pulsed laser ablation of zinc in tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[Crossref]

2009 (3)

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407  nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

S. Petersen and S. Barcikowski, “Conjugation efficiency of laser-based bioconjugation of gold nanoparticles with nucleic acids,” J. Phys. Chem. C 113, 19830–19835 (2009).
[Crossref]

E. Serrano, G. Rus, and J. García-Martínez, “Nanotechnology for sustainable energy,” Renew. Sustain. Energy Rev. 13, 2373–2384 (2009).
[Crossref]

2008 (2)

A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref]

2007 (2)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

V. Amendola, S. Polizzi, and M. Meneghetti, “Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization,” Langmuir 23, 6766–6770 (2007).
[Crossref]

2005 (4)

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005).
[Crossref]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468–1476 (2005).
[Crossref]

G. Kalyuzhny and R. W. Murray, “Ligand effects on optical properties of CdSe nanocrystals,” J. Phys. Chem. B 109, 7012–7021 (2005).
[Crossref]

2003 (3)

A. V. Kabashin and M. Meunier, “Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,” J. Appl. Phys. 94, 7941–7943 (2003).
[Crossref]

T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206, 314–320 (2003).
[Crossref]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).
[Crossref]

2000 (1)

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104, 9111–9117 (2000).
[Crossref]

1999 (2)

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[Crossref]

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

1997 (1)

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Ackermann, R.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Adams, D. E.

Alcolea Palafox, M.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Alonso, B.

Alvarez, P. J. J.

X. Qu, P. J. J. Alvarez, and Q. Li, “Applications of nanotechnology in water and wastewater treatment,” Water Res. 47, 3931–3946 (2013).
[Crossref]

Amendola, V.

V. Amendola, S. Polizzi, and M. Meneghetti, “Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization,” Langmuir 23, 6766–6770 (2007).
[Crossref]

Ams, M.

M. A. Sobhan, M. Ams, M. J. Withford, and E. M. Goldys, “Ultrafast laser ablative generation of gold nanoparticles: the influence of pulse energy, repetition frequency and spot size,” J. Nanoparticle Res. 12, 2831–2842 (2010).
[Crossref]

Andrade, J. R. C.

Andrews, M.

A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
[Crossref]

Aristov, A.

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

Arnold, C.

Arnold, C. L.

Athanassiou, A.

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

Babushkin, I.

Backus, S.

Bañares, L.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Barcikowski, S.

D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117, 3990–4103 (2017).
[Crossref]

R. Streubel, S. Barcikowski, and B. Gökce, “Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids,” Opt. Lett. 41, 1486–1489 (2016).
[Crossref]

A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids,” J. Phys. Chem. C 115, 5108–5114 (2011).
[Crossref]

P. Wagener and S. Barcikowski, “Laser fragmentation of organic microparticles into colloidal nanoparticles in a free liquid jet,” Appl. Phys. A 101, 435–439 (2010).
[Crossref]

P. Wagener, A. Schwenke, B. N. Chichkov, and S. Barcikowski, “Pulsed laser ablation of zinc in tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[Crossref]

S. Petersen and S. Barcikowski, “Conjugation efficiency of laser-based bioconjugation of gold nanoparticles with nucleic acids,” J. Phys. Chem. C 113, 19830–19835 (2009).
[Crossref]

A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).
[Crossref]

Bardi, G.

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

Bastiaens, B.

Baudelet, M.

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear-to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref]

Becker, A.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).
[Crossref]

Bellouard, Y.

Birnbaum, A.

T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, and J. Polte, “In situ determination of colloidal gold concentrations with UV-vis spectroscopy: limitations and perspectives,” Anal. Chem. 86, 11115–11124 (2014).
[Crossref]

Block, E.

Boulais, É.

R. Lachaine, É. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

Boutu, W.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

Burda, C.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[Crossref]

Cai, W.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Caputo, G.

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

Catelani, T.

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

Chaker, M.

J. Zhang, J. Claverie, M. Chaker, and D. Ma, “Colloidal metal nanoparticles prepared by laser ablation and their applications,” ChemPhysChem 18, 986–1006 (2017).
[Crossref]

Chaléard, C.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

Chen, L.-Q.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Chen, M.

A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
[Crossref]

Chen, Y.-H.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407  nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Chichkov, B. N.

P. Wagener, A. Schwenke, B. N. Chichkov, and S. Barcikowski, “Pulsed laser ablation of zinc in tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[Crossref]

A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).
[Crossref]

Chin, S. L.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).
[Crossref]

Claverie, J.

J. Zhang, J. Claverie, M. Chaker, and D. Ma, “Colloidal metal nanoparticles prepared by laser ablation and their applications,” ChemPhysChem 18, 986–1006 (2017).
[Crossref]

Cook, K.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Crespo, H.

Dai, C.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Damodaran, A. R.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Das, S.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Detalle, V.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

Dholakia, K.

A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
[Crossref]

Díaz-Núñez, P.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Doñate-Buendia, C.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging,” ACS Omega 3, 2735–2742 (2018).
[Crossref]

Du, X.-W.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Durand, M.

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear-to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref]

Durfee, C. G.

Durst, M.

Dykman, L.

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41, 2256–2282 (2012).
[Crossref]

El-Sayed, M. A.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[Crossref]

Escobet-Montalbán, A.

A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
[Crossref]

Eshghi, A. T.

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renew. Sustain. Energy Rev. 43, 584–598 (2015).
[Crossref]

Falomir, E.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging,” ACS Omega 3, 2735–2742 (2018).
[Crossref]

Feng, Q.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Fernández-Alonso, M.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging,” ACS Omega 3, 2735–2742 (2018).
[Crossref]

Fordell, T.

Fragouli, D.

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

Franz, D.

Freeland, J. W.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref]

García-Martínez, J.

E. Serrano, G. Rus, and J. García-Martínez, “Nanotechnology for sustainable energy,” Renew. Sustain. Energy Rev. 13, 2373–2384 (2009).
[Crossref]

Gatto, F.

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

Gökce, B.

D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117, 3990–4103 (2017).
[Crossref]

R. Streubel, S. Barcikowski, and B. Gökce, “Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids,” Opt. Lett. 41, 1486–1489 (2016).
[Crossref]

Goldys, E. M.

M. A. Sobhan, M. Ams, M. J. Withford, and E. M. Goldys, “Ultrafast laser ablative generation of gold nanoparticles: the influence of pulse energy, repetition frequency and spot size,” J. Nanoparticle Res. 12, 2831–2842 (2010).
[Crossref]

Golubtsov, I. S.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).
[Crossref]

González-Izquierdo, J.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

González-Rubio, G.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

G. González-Rubio, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers,” Acc. Chem. Res. 49, 678–686 (2016).
[Crossref]

Gopalan, V.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Götte, J.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Gregorcic, P.

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

Greif, R.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

Guarnieri, D.

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

Guerrero-Martínez, A.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

G. González-Rubio, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers,” Acc. Chem. Res. 49, 678–686 (2016).
[Crossref]

Gurevich, E. L.

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

Hahn, A.

A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).
[Crossref]

Hammer, D. X.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Han, S.

He, J.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Heidenblut, T.

Hendel, T.

T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, and J. Polte, “In situ determination of colloidal gold concentrations with UV-vis spectroscopy: limitations and perspectives,” Anal. Chem. 86, 11115–11124 (2014).
[Crossref]

Hong, Z.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Hoppius, J. S.

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

Iwan, B.

Iwasaki, A.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).
[Crossref]

Jones, T. G.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407  nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Juliá, J. E.

R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda, O. Mendoza-Yero, J. Lancis, J. E. Juliá, and G. Mínguez-Vega, “Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation,” ChemPhysChem 18, 1055–1060 (2017).
[Crossref]

Kabashin, A. V.

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

A. V. Kabashin and M. Meunier, “Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,” J. Appl. Phys. 94, 7941–7943 (2003).
[Crossref]

Kakita, T.

T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206, 314–320 (2003).
[Crossref]

Kalyuzhny, G.

G. Kalyuzhny and R. W. Murray, “Ligand effects on optical properties of CdSe nanocrystals,” J. Phys. Chem. B 109, 7012–7021 (2005).
[Crossref]

Kammel, R.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Kandidov, V. P.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).
[Crossref]

Kanitz, A.

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

Karapetrova, J.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Kasaeian, A.

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renew. Sustain. Energy Rev. 43, 584–598 (2015).
[Crossref]

Kennedy, P. K.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Kettemann, F.

T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, and J. Polte, “In situ determination of colloidal gold concentrations with UV-vis spectroscopy: limitations and perspectives,” Anal. Chem. 86, 11115–11124 (2014).
[Crossref]

Khlebtsov, N.

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41, 2256–2282 (2012).
[Crossref]

Kim, H.

Kim, S.-W.

Kleinfeld, D.

Kohno, J.

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104, 9111–9117 (2000).
[Crossref]

Kondow, T.

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104, 9111–9117 (2000).
[Crossref]

Kosareva, O.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).
[Crossref]

Kovacev, M.

Kulinich, S. A.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

L’Huillier, A.

Laanait, N.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Lachaine, R.

R. Lachaine, É. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

Lacour, J.-L.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

Lancis, J.

R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda, O. Mendoza-Yero, J. Lancis, J. E. Juliá, and G. Mínguez-Vega, “Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation,” ChemPhysChem 18, 1055–1060 (2017).
[Crossref]

Lei, S.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Levis, R. J.

B. Tangeysh, K. Moore Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction,” Nano Lett. 15, 3377–3382 (2015).
[Crossref]

J. H. Odhner, K. M. Tibbetts, B. Tangeysh, B. B. Wayland, and R. J. Levis, “Mechanism of improved Au nanoparticle size distributions using simultaneous spatial and temporal focusing for femtosecond laser irradiation of aqueous KAuCl4,” J. Phys. Chem. C 118, 23986–23995 (2014).
[Crossref]

B. Tangeysh, K. M. Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]−,” J. Phys. Chem. C 117, 18719–18727 (2013).
[Crossref]

Li, Q.

X. Qu, P. J. J. Alvarez, and Q. Li, “Applications of nanotechnology in water and wastewater treatment,” Water Res. 47, 3931–3946 (2013).
[Crossref]

Lim, K.

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear-to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref]

Lin, W.

Link, S.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[Crossref]

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref]

Liu, P.

J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, “External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly,” Prog. Mater. Sci. 87, 140–220 (2017).
[Crossref]

Liu, W.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).
[Crossref]

Liz-Marzán, L. M.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

G. González-Rubio, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers,” Acc. Chem. Res. 49, 678–686 (2016).
[Crossref]

Llombart, P.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Ma, C.

Ma, D.

J. Zhang, J. Claverie, M. Chaker, and D. Ma, “Colloidal metal nanoparticles prepared by laser ablation and their applications,” ChemPhysChem 18, 986–1006 (2017).
[Crossref]

Macdowell, L. G.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Mafuné, F.

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104, 9111–9117 (2000).
[Crossref]

Magrì, D.

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

Mao, X. L.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

Maragkaki, S.

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

Martin, L. W.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Mauchien, P.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

Maximova, K.

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

Mazilu, M.

A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
[Crossref]

McCarter, M. R.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Mendoza-Yero, O.

R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda, O. Mendoza-Yero, J. Lancis, J. E. Juliá, and G. Mínguez-Vega, “Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation,” ChemPhysChem 18, 1055–1060 (2017).
[Crossref]

Meneghetti, M.

V. Amendola, S. Polizzi, and M. Meneghetti, “Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization,” Langmuir 23, 6766–6770 (2007).
[Crossref]

Menéndez-Manjón, A.

A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids,” J. Phys. Chem. C 115, 5108–5114 (2011).
[Crossref]

Merdji, H.

Meunier, M.

R. Lachaine, É. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

A. V. Kabashin and M. Meunier, “Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,” J. Appl. Phys. 94, 7941–7943 (2003).
[Crossref]

Meynadier, P.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

Milchberg, H. M.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407  nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Mínguez-Vega, G.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging,” ACS Omega 3, 2735–2742 (2018).
[Crossref]

R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda, O. Mendoza-Yero, J. Lancis, J. E. Juliá, and G. Mínguez-Vega, “Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation,” ChemPhysChem 18, 1055–1060 (2017).
[Crossref]

Miranda, M.

Mohamed, M. B.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[Crossref]

Moloney, J. V.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Mondragón, R.

R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda, O. Mendoza-Yero, J. Lancis, J. E. Juliá, and G. Mínguez-Vega, “Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation,” ChemPhysChem 18, 1055–1060 (2017).
[Crossref]

Moore Tibbetts, K.

B. Tangeysh, K. Moore Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction,” Nano Lett. 15, 3377–3382 (2015).
[Crossref]

Morgner, U.

Murray, R. W.

G. Kalyuzhny and R. W. Murray, “Ligand effects on optical properties of CdSe nanocrystals,” J. Phys. Chem. B 109, 7012–7021 (2005).
[Crossref]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Nagy, T.

Newell, A. C.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Nicolas, R.

Nikoobakht, B.

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[Crossref]

Nolte, S.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Nouvellon, C.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

Odhner, J. H.

B. Tangeysh, K. Moore Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction,” Nano Lett. 15, 3377–3382 (2015).
[Crossref]

J. H. Odhner, K. M. Tibbetts, B. Tangeysh, B. B. Wayland, and R. J. Levis, “Mechanism of improved Au nanoparticle size distributions using simultaneous spatial and temporal focusing for femtosecond laser irradiation of aqueous KAuCl4,” J. Phys. Chem. C 118, 23986–23995 (2014).
[Crossref]

B. Tangeysh, K. M. Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]−,” J. Phys. Chem. C 117, 18719–18727 (2013).
[Crossref]

Oron, D.

Palianov, P.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref]

Peña-Rodríguez, O.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Perdrix, M.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

Petersen, S.

S. Petersen and S. Barcikowski, “Conjugation efficiency of laser-based bioconjugation of gold nanoparticles with nucleic acids,” J. Phys. Chem. C 113, 19830–19835 (2009).
[Crossref]

Petite, G.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

Polizzi, S.

V. Amendola, S. Polizzi, and M. Meneghetti, “Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization,” Langmuir 23, 6766–6770 (2007).
[Crossref]

Polte, J.

T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, and J. Polte, “In situ determination of colloidal gold concentrations with UV-vis spectroscopy: limitations and perspectives,” Anal. Chem. 86, 11115–11124 (2014).
[Crossref]

Pompa, P. P.

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

Prada, A.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Puerto-Belda, V.

R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda, O. Mendoza-Yero, J. Lancis, J. E. Juliá, and G. Mínguez-Vega, “Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation,” ChemPhysChem 18, 1055–1060 (2017).
[Crossref]

Pyatenko, A.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging,” ACS Omega 3, 2735–2742 (2018).
[Crossref]

Qu, X.

X. Qu, P. J. J. Alvarez, and Q. Li, “Applications of nanotechnology in water and wastewater treatment,” Water Res. 47, 3931–3946 (2013).
[Crossref]

Rademann, K.

T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, and J. Polte, “In situ determination of colloidal gold concentrations with UV-vis spectroscopy: limitations and perspectives,” Anal. Chem. 86, 11115–11124 (2014).
[Crossref]

Ramesh, R.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Reinhardt, C.

Richardson, M.

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear-to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref]

Ripault, Q.

Rivera, A.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Rockwell, B. A.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Rus, G.

E. Serrano, G. Rus, and J. García-Martínez, “Nanotechnology for sustainable energy,” Renew. Sustain. Energy Rev. 13, 2373–2384 (2009).
[Crossref]

Russo, R. E.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

Saber, W. A.

A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
[Crossref]

Sallé, B.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

Sameti, M.

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renew. Sustain. Energy Rev. 43, 584–598 (2015).
[Crossref]

Sánchez-Moreno, P.

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

Sawabe, H.

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104, 9111–9117 (2000).
[Crossref]

Schwenke, A.

P. Wagener, A. Schwenke, B. N. Chichkov, and S. Barcikowski, “Pulsed laser ablation of zinc in tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[Crossref]

Semerok, A.

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

Sentis, M.

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

Serrano, E.

E. Serrano, G. Rus, and J. García-Martínez, “Nanotechnology for sustainable energy,” Renew. Sustain. Energy Rev. 13, 2373–2384 (2009).
[Crossref]

Shi, L.

Silberberg, Y.

Silva, F.

Simon Herrington, C.

A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
[Crossref]

Singh, S. C.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Skupin, S.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Sobhan, M. A.

M. A. Sobhan, M. Ams, M. J. Withford, and E. M. Goldys, “Ultrafast laser ablative generation of gold nanoparticles: the influence of pulse energy, repetition frequency and spot size,” J. Nanoparticle Res. 12, 2831–2842 (2010).
[Crossref]

Spesyvtsev, R.

A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
[Crossref]

Squier, J. A.

Steinmeyer, G.

Stoica, V. A.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Stone, G. A.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Streubel, R.

Takeda, Y.

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104, 9111–9117 (2000).
[Crossref]

Tal, E.

Tangeysh, B.

B. Tangeysh, K. Moore Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction,” Nano Lett. 15, 3377–3382 (2015).
[Crossref]

J. H. Odhner, K. M. Tibbetts, B. Tangeysh, B. B. Wayland, and R. J. Levis, “Mechanism of improved Au nanoparticle size distributions using simultaneous spatial and temporal focusing for femtosecond laser irradiation of aqueous KAuCl4,” J. Phys. Chem. C 118, 23986–23995 (2014).
[Crossref]

B. Tangeysh, K. M. Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]−,” J. Phys. Chem. C 117, 18719–18727 (2013).
[Crossref]

Tardajos, G.

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Thomas, J.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Thompson, C. R.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Tibbetts, K. M.

J. H. Odhner, K. M. Tibbetts, B. Tangeysh, B. B. Wayland, and R. J. Levis, “Mechanism of improved Au nanoparticle size distributions using simultaneous spatial and temporal focusing for femtosecond laser irradiation of aqueous KAuCl4,” J. Phys. Chem. C 118, 23986–23995 (2014).
[Crossref]

B. Tangeysh, K. M. Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]−,” J. Phys. Chem. C 117, 18719–18727 (2013).
[Crossref]

Ting, A.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407  nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Torres-Mendieta, R.

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging,” ACS Omega 3, 2735–2742 (2018).
[Crossref]

R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda, O. Mendoza-Yero, J. Lancis, J. E. Juliá, and G. Mínguez-Vega, “Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation,” ChemPhysChem 18, 1055–1060 (2017).
[Crossref]

Tsuji, M.

T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206, 314–320 (2003).
[Crossref]

Tsuji, T.

T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206, 314–320 (2003).
[Crossref]

Tünnermann, A.

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

van Howe, J.

Varma, S.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407  nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Veronesi, M.

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

Vitek, D. N.

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref]

Wagener, P.

A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids,” J. Phys. Chem. C 115, 5108–5114 (2011).
[Crossref]

P. Wagener and S. Barcikowski, “Laser fragmentation of organic microparticles into colloidal nanoparticles in a free liquid jet,” Appl. Phys. A 101, 435–439 (2010).
[Crossref]

P. Wagener, A. Schwenke, B. N. Chichkov, and S. Barcikowski, “Pulsed laser ablation of zinc in tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[Crossref]

Walko, D. A.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Wang, C. X.

J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, “External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly,” Prog. Mater. Sci. 87, 140–220 (2017).
[Crossref]

Wayland, B. B.

B. Tangeysh, K. Moore Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction,” Nano Lett. 15, 3377–3382 (2015).
[Crossref]

J. H. Odhner, K. M. Tibbetts, B. Tangeysh, B. B. Wayland, and R. J. Levis, “Mechanism of improved Au nanoparticle size distributions using simultaneous spatial and temporal focusing for femtosecond laser irradiation of aqueous KAuCl4,” J. Phys. Chem. C 118, 23986–23995 (2014).
[Crossref]

B. Tangeysh, K. M. Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]−,” J. Phys. Chem. C 117, 18719–18727 (2013).
[Crossref]

Weigand, R.

Wen, H.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Wilkes, Z. W.

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407  nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Withford, M. J.

M. A. Sobhan, M. Ams, M. J. Withford, and E. M. Goldys, “Ultrafast laser ablative generation of gold nanoparticles: the influence of pulse energy, repetition frequency and spot size,” J. Nanoparticle Res. 12, 2831–2842 (2010).
[Crossref]

Wright, E. M.

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

Wuithschick, M.

T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, and J. Polte, “In situ determination of colloidal gold concentrations with UV-vis spectroscopy: limitations and perspectives,” Anal. Chem. 86, 11115–11124 (2014).
[Crossref]

Xiao, J.

J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, “External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly,” Prog. Mater. Sci. 87, 140–220 (2017).
[Crossref]

Xu, C.

Yadav, A.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Yang, G. W.

J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, “External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly,” Prog. Mater. Sci. 87, 140–220 (2017).
[Crossref]

Yang, S.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Yuan, Y.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Zeng, H.

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Zeng, X.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

Zhang, D.

D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117, 3990–4103 (2017).
[Crossref]

Zhang, J.

J. Zhang, J. Claverie, M. Chaker, and D. Ma, “Colloidal metal nanoparticles prepared by laser ablation and their applications,” ChemPhysChem 18, 986–1006 (2017).
[Crossref]

Zhang, X.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Zhang, Z.

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Zhu, G.

Zipfel, W.

Acc. Chem. Res. (1)

G. González-Rubio, A. Guerrero-Martínez, and L. M. Liz-Marzán, “Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers,” Acc. Chem. Res. 49, 678–686 (2016).
[Crossref]

ACS Nano (1)

D. Magrì, P. Sánchez-Moreno, G. Caputo, F. Gatto, M. Veronesi, G. Bardi, T. Catelani, D. Guarnieri, A. Athanassiou, P. P. Pompa, and D. Fragouli, “Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment,” ACS Nano 12, 7690–7700 (2018).
[Crossref]

ACS Omega (1)

C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, and G. Mínguez-Vega, “Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging,” ACS Omega 3, 2735–2742 (2018).
[Crossref]

ACS Photonics (1)

R. Lachaine, É. Boulais, and M. Meunier, “From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles,” ACS Photonics 1, 331–336 (2014).
[Crossref]

Adv. Funct. Mater. (1)

H. Zeng, X.-W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, “Nanomaterials via laser ablation/irradiation in liquid: a review,” Adv. Funct. Mater. 22, 1333–1353 (2012).
[Crossref]

Anal. Chem. (1)

T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, and J. Polte, “In situ determination of colloidal gold concentrations with UV-vis spectroscopy: limitations and perspectives,” Anal. Chem. 86, 11115–11124 (2014).
[Crossref]

Appl. Phys. A (2)

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

P. Wagener and S. Barcikowski, “Laser fragmentation of organic microparticles into colloidal nanoparticles in a free liquid jet,” Appl. Phys. A 101, 435–439 (2010).
[Crossref]

Appl. Phys. B (1)

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76, 215–229 (2003).
[Crossref]

Appl. Phys. Lett. (1)

Z. W. Wilkes, S. Varma, Y.-H. Chen, H. M. Milchberg, T. G. Jones, and A. Ting, “Direct measurements of the nonlinear index of refraction of water at 815 and 407  nm using single-shot supercontinuum spectral interferometry,” Appl. Phys. Lett. 94, 211102 (2009).
[Crossref]

Appl. Surf. Sci. (3)

A. Semerok, C. Chaléard, V. Detalle, J.-L. Lacour, P. Mauchien, P. Meynadier, C. Nouvellon, B. Sallé, P. Palianov, M. Perdrix, and G. Petite, “Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses,” Appl. Surf. Sci. 138–139, 311–314 (1999).
[Crossref]

T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci. 206, 314–320 (2003).
[Crossref]

J. S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, and E. L. Gurevich, “Optimization of femtosecond laser processing in liquids,” Appl. Surf. Sci. 467–468, 255–260 (2019).
[Crossref]

Chem. Rev. (1)

D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117, 3990–4103 (2017).
[Crossref]

Chem. Soc. Rev. (1)

L. Dykman and N. Khlebtsov, “Gold nanoparticles in biomedical applications: recent advances and perspectives,” Chem. Soc. Rev. 41, 2256–2282 (2012).
[Crossref]

ChemPhysChem (2)

R. Torres-Mendieta, R. Mondragón, V. Puerto-Belda, O. Mendoza-Yero, J. Lancis, J. E. Juliá, and G. Mínguez-Vega, “Characterization of tin/ethylene glycol solar nanofluids synthesized by femtosecond laser radiation,” ChemPhysChem 18, 1055–1060 (2017).
[Crossref]

J. Zhang, J. Claverie, M. Chaker, and D. Ma, “Colloidal metal nanoparticles prepared by laser ablation and their applications,” ChemPhysChem 18, 986–1006 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, and C. R. Thompson, “Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 127–137 (1997).
[Crossref]

J. Appl. Phys. (1)

A. V. Kabashin and M. Meunier, “Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water,” J. Appl. Phys. 94, 7941–7943 (2003).
[Crossref]

J. Laser Micro/Nanoeng. (1)

A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” J. Laser Micro/Nanoeng. 3, 73–77 (2008).
[Crossref]

J. Nanoparticle Res. (1)

M. A. Sobhan, M. Ams, M. J. Withford, and E. M. Goldys, “Ultrafast laser ablative generation of gold nanoparticles: the influence of pulse energy, repetition frequency and spot size,” J. Nanoparticle Res. 12, 2831–2842 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, “Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence,” J. Phys. Chem. A 103, 1165–1170 (1999).
[Crossref]

J. Phys. Chem. B (2)

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104, 9111–9117 (2000).
[Crossref]

G. Kalyuzhny and R. W. Murray, “Ligand effects on optical properties of CdSe nanocrystals,” J. Phys. Chem. B 109, 7012–7021 (2005).
[Crossref]

J. Phys. Chem. C (5)

S. Petersen and S. Barcikowski, “Conjugation efficiency of laser-based bioconjugation of gold nanoparticles with nucleic acids,” J. Phys. Chem. C 113, 19830–19835 (2009).
[Crossref]

A. Menéndez-Manjón, P. Wagener, and S. Barcikowski, “Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids,” J. Phys. Chem. C 115, 5108–5114 (2011).
[Crossref]

B. Tangeysh, K. M. Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Gold nanoparticle synthesis using spatially and temporally shaped femtosecond laser pulses: post-irradiation auto-reduction of aqueous [AuCl4]−,” J. Phys. Chem. C 117, 18719–18727 (2013).
[Crossref]

J. H. Odhner, K. M. Tibbetts, B. Tangeysh, B. B. Wayland, and R. J. Levis, “Mechanism of improved Au nanoparticle size distributions using simultaneous spatial and temporal focusing for femtosecond laser irradiation of aqueous KAuCl4,” J. Phys. Chem. C 118, 23986–23995 (2014).
[Crossref]

P. Wagener, A. Schwenke, B. N. Chichkov, and S. Barcikowski, “Pulsed laser ablation of zinc in tetrahydrofuran: bypassing the cavitation bubble,” J. Phys. Chem. C 114, 7618–7625 (2010).
[Crossref]

Langmuir (1)

V. Amendola, S. Polizzi, and M. Meneghetti, “Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization,” Langmuir 23, 6766–6770 (2007).
[Crossref]

Light Sci. Appl. (1)

R. Kammel, R. Ackermann, J. Thomas, J. Götte, S. Skupin, A. Tünnermann, and S. Nolte, “Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing,” Light Sci. Appl. 3, e169 (2014).
[Crossref]

Nano Lett. (1)

B. Tangeysh, K. Moore Tibbetts, J. H. Odhner, B. B. Wayland, and R. J. Levis, “Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction,” Nano Lett. 15, 3377–3382 (2015).
[Crossref]

Nanotechnology (1)

K. Maximova, A. Aristov, M. Sentis, and A. V. Kabashin, “Size-controllable synthesis of bare gold nanoparticles by femtosecond laser fragmentation in water,” Nanotechnology 26, 065601 (2015).
[Crossref]

Nat. Mater. (1)

V. A. Stoica, N. Laanait, C. Dai, Z. Hong, Y. Yuan, Z. Zhang, S. Lei, M. R. McCarter, A. Yadav, A. R. Damodaran, S. Das, G. A. Stone, J. Karapetrova, D. A. Walko, X. Zhang, L. W. Martin, R. Ramesh, L.-Q. Chen, H. Wen, V. Gopalan, and J. W. Freeland, “Optical creation of a supercrystal with three-dimensional nanoscale periodicity,” Nat. Mater. 18, 377–383 (2019).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optica (1)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441, 47–189 (2007).
[Crossref]

Phys. Rev. Lett. (1)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[Crossref]

Prog. Mater. Sci. (1)

J. Xiao, P. Liu, C. X. Wang, and G. W. Yang, “External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly,” Prog. Mater. Sci. 87, 140–220 (2017).
[Crossref]

Renew. Sustain. Energy Rev. (2)

A. Kasaeian, A. T. Eshghi, and M. Sameti, “A review on the applications of nanofluids in solar energy systems,” Renew. Sustain. Energy Rev. 43, 584–598 (2015).
[Crossref]

E. Serrano, G. Rus, and J. García-Martínez, “Nanotechnology for sustainable energy,” Renew. Sustain. Energy Rev. 13, 2373–2384 (2009).
[Crossref]

Sci. Adv. (1)

A. Escobet-Montalbán, R. Spesyvtsev, M. Chen, W. A. Saber, M. Andrews, C. Simon Herrington, M. Mazilu, and K. Dholakia, “Wide-field multiphoton imaging through scattering media without correction,” Sci. Adv. 4, eaau1338 (2018).
[Crossref]

Sci. Rep. (1)

K. Lim, M. Durand, M. Baudelet, and M. Richardson, “Transition from linear-to nonlinear-focusing regime in filamentation,” Sci. Rep. 4, 7217 (2014).
[Crossref]

Science (1)

G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. Alcolea Palafox, L. M. Liz-Marzán, O. Peña-Rodríguez, and A. Guerrero-Martínez, “Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances,” Science 358, 640–644 (2017).
[Crossref]

Water Res. (1)

X. Qu, P. J. J. Alvarez, and Q. Li, “Applications of nanotechnology in water and wastewater treatment,” Water Res. 47, 3931–3946 (2013).
[Crossref]

Other (2)

R. W. Boyd, Nonlinear Optics (Academic, 2008).

T. Wagner, “ParticleSizer 1.0.7,” https://imagej.net/ParticleSizer (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schemes of the experimental setups employed to fabricate and compare gold nanoparticle production. (a) Image-based SSTF system based on a diffraction grating that spatially separates the broad 30 fs laser spectrum schematically displayed as red, green, and blue. Two off-axis gold mirrors form an image of the grating’s surface and achieve spatial overlap of all the wavelengths at focal spot plane. (b) Analogous image system (IOS) without spatiotemporal focusing effect. (c) Standard laser ablation in liquids system (COS) based on direct focalization of the femtosecond laser onto the target’s surface.
Fig. 2.
Fig. 2. Temporal characterization of the experimental setups. (a) Experimental setup employed for d-scan measurements detailed for the SSTF system. Two BK7 prisms control dispersion added to the pulses by displacing one of them. After propagation through the system a second-harmonic generation (SHG) crystal is placed in the focal spot plane of the system and the SH signal generated is acquired using a collecting lens and a fiber spectrometer. (b) D-scan trace measured for the COS. SH signal is represented as a function of the position of the movable BK7 prism. (c) D-scan trace measured for the SSTF system. (d) D-scan trace measured for the IOS.
Fig. 3.
Fig. 3. Spectral and spatial characterization of the experimental setups. (a) IOS experimental measurement of the beam for several axial positions (left) and focal spot measured profile (right). (b) COS experimental measurement of the beam for several axial positions (left) and focal spot measured profile (right). (c) SSTF experimental measurement of the beam for several axial positions (left) and focal spot measured profile (right). (d) Spectral measurements performed at axial positions I, II, III, and IV corresponding to (c).
Fig. 4.
Fig. 4. Pulse duration simulation and d-scan measurements. (a) D-scan pulse duration at focal spot plane for the COS. (b) D-scan pulse duration at focal spot plane for the SSTF system. (c) D-scan pulse duration at focal spot plane for the IOS. (d) IOS, COS, and SSTF systems pulse duration simulation as a function of the distance to the focal plane.
Fig. 5.
Fig. 5. Experimental characterization of the energy losses. Experimental transmittance measurements performed for a liquid layer of (a) 3 mm and (b) 7 mm. (c) Image system self-focusing distance zf as a function of the pulse energy. (d) Irradiance profile as a function of the distance to the focal plane for the IOS, COS, and SSTF systems together with the optical breakdown intensity threshold in water.
Fig. 6.
Fig. 6. Gold nanoparticle synthesis and productivity evaluation. Images of the gold colloids generated for pulse energy values from I–VI for the (a) SSTF system, (b) IOS, and (c) COS. In every case energy values for I–VI are 100, 120, 140, 160, 180, and 200 μJ. (d) Productivity comparison between the IOS, COS, and SSTF for 3 mm liquid layer. (e) Productivity comparison for 3, 5, and 7 mm liquid layer using the SSTF system.
Fig. 7.
Fig. 7. Nanoparticle characterization. TEM image of the gold colloid generated for a pulse energy value of 180 μJ with the (a) SSTF system, (b) IOS, and (c) COS. (d)–(f) Corresponding histograms displaying nanoparticle size distributions from (a)–(c).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ=1Re(1/m)22ln(2)ω,
m=1+α2ω2(zf)24f2aik0α2ω2(zf)2f2,
a=f2s24f2+k02s4iz(4f2+k02s4)fk02s42k0(4f2+k02s4),
Pcr=π(0.61λ)28n0n2,
zf=2n0ω02λ1P/Pcr.