Abstract

We investigate numerically the pattern formation in 2-μm thulium-doped Mamyshev fiber oscillators, associated with the dissipative Faraday instability. The dispersion-managed fiber ring oscillator is designed with commercial fibers, allowing the dynamics for a wide range of average dispersion regimes to be studied, from normal to near-zero cavity dispersion where the Benjamin–Feir instability remains inhibited. For the first time in the 2-μm spectral window, the formation of highly coherent periodic patterns is demonstrated numerically with rates up to 100  GHz. In addition, irregular patterns are also investigated, revealing the generation of rogue waves via nonlinear collision processes. Our investigations have potential applications for the generation of multigigahertz frequency combs. They also shed new light on the dissipative Faraday instability mechanisms in the area of nonlinear optical cavity dynamics.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Pulse-shaping mechanisms in passively mode-locked thulium-doped fiber lasers

Huihui Li, Jiang Liu, Zhaochen Cheng, Jia Xu, Fangzhou Tan, and Pu Wang
Opt. Express 23(5) 6292-6303 (2015)

Megawatt peak power from a Mamyshev oscillator

Zhanwei Liu, Zachary M. Ziegler, Logan G. Wright, and Frank W. Wise
Optica 4(6) 649-654 (2017)

Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion

Hong-Jie Chen, Meng Liu, Jian Yao, Song Hu, Jian-Bo He, Ai-Ping Luo, Wen-Cheng Xu, and Zhi-Chao Luo
Opt. Express 26(3) 2972-2982 (2018)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [Crossref]
  2. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
    [Crossref]
  3. B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
    [Crossref]
  4. W. Liu, L. Pang, H. Han, Z. Shen, M. Lei, H. Teng, and Z. Wei, “Dark solitons in WS2 erbium-doped fiber lasers,” Photon. Res. 4, 111–114 (2016).
    [Crossref]
  5. K. Zhang, M. Feng, Y. Ren, F. Liu, X. Chen, J. Yang, X. Yan, F. Song, and J. Tian, “Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber,” Photon. Res. 6, 893–899 (2018).
    [Crossref]
  6. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
    [Crossref]
  7. A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39, 319–322 (2014).
    [Crossref]
  8. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication (IEEE, 1998), pp. 475–476.
  9. K. Sun, M. Rochette, and L. R. Chen, “Output characterization of a self-pulsating and aperiodic optical fiber source based on cascaded regeneration,” Opt. Express 17, 10419–10432 (2009).
    [Crossref]
  10. S. Pitois, C. Finot, L. Provost, and D. J. Richardson, “Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators,” J. Opt. Soc. Am. B 25, 1537–1547 (2008).
    [Crossref]
  11. M. Rochette, L. R. Chen, K. Sun, and J. Hernández-Cordero, “Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering,” IEEE Photon. Technol. Lett. 20, 1497–1499 (2008).
    [Crossref]
  12. T. North, A. Al-kadry, and M. Rochette, “Analysis of self-pulsating sources based on cascaded regeneration and soliton self-frequency shifting,” IEEE J. Sel. Top. Quantum Electron. 20, 612–618 (2014).
    [Crossref]
  13. T. North and M. Rochette, “Regenerative self-pulsating sources of large bandwidths,” Opt. Lett. 39, 174–177 (2014).
    [Crossref]
  14. K. Regelskis, J. Želudevičius, K. Viskontas, and G. Račiukaitis, “Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering,” Opt. Lett. 40, 5255–5258 (2015).
    [Crossref]
  15. Z. Liu, Z. M. Ziegler, L. G. Wright, and F. W. Wise, “Megawatt peak power from a Mamyshev oscillator,” Optica 4, 649–654 (2017).
    [Crossref]
  16. W. Fu, L. G. Wright, and F. W. Wise, “High-power femtosecond pulses without a modelocked laser,” Optica 4, 831–834 (2017).
    [Crossref]
  17. W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
    [Crossref]
  18. P. Sidorenko, W. Fu, L. G. Wright, M. Olivier, and F. W. Wise, “Self-seeded, multi-megawatt, Mamyshev oscillator,” Opt. Lett. 43, 2672–2675 (2018).
    [Crossref]
  19. W. Liu, R. Liao, J. Zhao, J. Cui, Y. Song, C. Wang, and M. Hu, “Femtosecond Mamyshev oscillator with 10-MW-level peak power,” Optica 6, 194–197 (2019).
    [Crossref]
  20. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
    [Crossref]
  21. P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20, 2009–2011 (1995).
    [Crossref]
  22. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulation instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett. 27, 915–917 (2002).
    [Crossref]
  23. R. E. Kennedy, S. V. Popov, and J. R. Taylor, “Ytterbium gain band self-induced modulation instability laser,” Opt. Lett. 31, 167–168 (2006).
    [Crossref]
  24. S. Coen and M. Haelterman, “Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulation instability in a passive fiber cavity,” Opt. Lett. 26, 39–41 (2001).
    [Crossref]
  25. F. Copie, M. Conforti, A. Kudlinski, and A. Mussot, “Competing Turing and Faraday instabilities in longitudinally modulated passive resonators,” Phys. Rev. Lett. 116, 143901 (2016).
    [Crossref]
  26. F. Copie, M. Conforti, A. Kudlinski, S. Trillo, and A. Mussot, “Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity,” Opt. Lett. 42, 435–438 (2017).
    [Crossref]
  27. N. J. Smith and N. J. Doran, “Modulation instabilities in fibers with periodic dispersion management,” Opt. Lett. 21, 570–572 (1996).
    [Crossref]
  28. K. Staliunas, C. Hang, and V. V. Konotop, “Parametric patterns in optical fiber ring nonlinear resonators,” Phys. Rev. A 88, 023846 (2013).
    [Crossref]
  29. N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
    [Crossref]
  30. A. M. Perego, S. K. Turitsyn, and K. Staliunas, “Gain through losses in nonlinear optics,” Light Sci. Appl. 7, 43 (2018).
    [Crossref]
  31. A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
    [Crossref]
  32. A. M. Perego, “High-repetition-rate, multi-pulse all-normal-dispersion fiber laser,” Opt. Lett. 42, 3574–3577 (2017).
    [Crossref]
  33. A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-induced Faraday instability laser,” Phys. Rev. Lett. 120, 213902 (2018).
    [Crossref]
  34. P. Wang, D. Hu, K. Zhao, L. Jiao, X. Xiao, and C. Yang, “Dissipative rogue waves among noise-like pulses in a Tm fiber laser mode locked by a monolayer MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1800207 (2018).
    [Crossref]
  35. C. Bao, X. Xiao, and C. Yang, “Spectral compression of a dispersion-managed mode-locked Tm:fiber laser at 1.9 μm,” IEEE Photon. Technol. Lett. 28, 497–500 (2016).
    [Crossref]
  36. F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
    [Crossref]
  37. J. Peng, N. Tarasov, S. Sugavanam, and D. Churkin, “Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser,” Opt. Express 24, 24256–24263 (2016).
    [Crossref]
  38. C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
    [Crossref]
  39. M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35, 658–660 (2010).
    [Crossref]
  40. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
    [Crossref]
  41. K. Hammani, C. Finot, and G. Millot, “Emergence of extreme events in fiber-based parametric processes driven by a partially incoherent pump wave,” Opt. Lett. 34, 1138–1140 (2009).
    [Crossref]
  42. A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89, 013835 (2014).
    [Crossref]
  43. J. M. Soto-Crespo, Ph. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E 84, 016604 (2011).
    [Crossref]

2019 (1)

2018 (6)

A. M. Perego, S. K. Turitsyn, and K. Staliunas, “Gain through losses in nonlinear optics,” Light Sci. Appl. 7, 43 (2018).
[Crossref]

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-induced Faraday instability laser,” Phys. Rev. Lett. 120, 213902 (2018).
[Crossref]

P. Wang, D. Hu, K. Zhao, L. Jiao, X. Xiao, and C. Yang, “Dissipative rogue waves among noise-like pulses in a Tm fiber laser mode locked by a monolayer MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1800207 (2018).
[Crossref]

K. Zhang, M. Feng, Y. Ren, F. Liu, X. Chen, J. Yang, X. Yan, F. Song, and J. Tian, “Q-switched and mode-locked Er-doped fiber laser using PtSe2 as a saturable absorber,” Photon. Res. 6, 893–899 (2018).
[Crossref]

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
[Crossref]

P. Sidorenko, W. Fu, L. G. Wright, M. Olivier, and F. W. Wise, “Self-seeded, multi-megawatt, Mamyshev oscillator,” Opt. Lett. 43, 2672–2675 (2018).
[Crossref]

2017 (4)

2016 (6)

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

J. Peng, N. Tarasov, S. Sugavanam, and D. Churkin, “Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser,” Opt. Express 24, 24256–24263 (2016).
[Crossref]

C. Bao, X. Xiao, and C. Yang, “Spectral compression of a dispersion-managed mode-locked Tm:fiber laser at 1.9 μm,” IEEE Photon. Technol. Lett. 28, 497–500 (2016).
[Crossref]

A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

F. Copie, M. Conforti, A. Kudlinski, and A. Mussot, “Competing Turing and Faraday instabilities in longitudinally modulated passive resonators,” Phys. Rev. Lett. 116, 143901 (2016).
[Crossref]

W. Liu, L. Pang, H. Han, Z. Shen, M. Lei, H. Teng, and Z. Wei, “Dark solitons in WS2 erbium-doped fiber lasers,” Photon. Res. 4, 111–114 (2016).
[Crossref]

2015 (1)

2014 (5)

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39, 319–322 (2014).
[Crossref]

T. North, A. Al-kadry, and M. Rochette, “Analysis of self-pulsating sources based on cascaded regeneration and soliton self-frequency shifting,” IEEE J. Sel. Top. Quantum Electron. 20, 612–618 (2014).
[Crossref]

T. North and M. Rochette, “Regenerative self-pulsating sources of large bandwidths,” Opt. Lett. 39, 174–177 (2014).
[Crossref]

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89, 013835 (2014).
[Crossref]

2013 (2)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

K. Staliunas, C. Hang, and V. V. Konotop, “Parametric patterns in optical fiber ring nonlinear resonators,” Phys. Rev. A 88, 023846 (2013).
[Crossref]

2012 (2)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

2011 (1)

J. M. Soto-Crespo, Ph. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E 84, 016604 (2011).
[Crossref]

2010 (1)

2009 (2)

2008 (2)

S. Pitois, C. Finot, L. Provost, and D. J. Richardson, “Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators,” J. Opt. Soc. Am. B 25, 1537–1547 (2008).
[Crossref]

M. Rochette, L. R. Chen, K. Sun, and J. Hernández-Cordero, “Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering,” IEEE Photon. Technol. Lett. 20, 1497–1499 (2008).
[Crossref]

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

2006 (1)

2004 (1)

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

2002 (1)

2001 (1)

1996 (1)

1995 (1)

1992 (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Aguergaray, C.

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

J. M. Soto-Crespo, Ph. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E 84, 016604 (2011).
[Crossref]

Al-kadry, A.

T. North, A. Al-kadry, and M. Rochette, “Analysis of self-pulsating sources based on cascaded regeneration and soliton self-frequency shifting,” IEEE J. Sel. Top. Quantum Electron. 20, 612–618 (2014).
[Crossref]

Backus, S.

Bao, C.

C. Bao, X. Xiao, and C. Yang, “Spectral compression of a dispersion-managed mode-locked Tm:fiber laser at 1.9 μm,” IEEE Photon. Technol. Lett. 28, 497–500 (2016).
[Crossref]

Broderick, N. G. R.

Buckley, J.

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Chembo, Y. K.

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89, 013835 (2014).
[Crossref]

Chen, L. R.

K. Sun, M. Rochette, and L. R. Chen, “Output characterization of a self-pulsating and aperiodic optical fiber source based on cascaded regeneration,” Opt. Express 17, 10419–10432 (2009).
[Crossref]

M. Rochette, L. R. Chen, K. Sun, and J. Hernández-Cordero, “Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering,” IEEE Photon. Technol. Lett. 20, 1497–1499 (2008).
[Crossref]

Chen, X.

Chestnut, D. A.

Churkin, D.

J. Peng, N. Tarasov, S. Sugavanam, and D. Churkin, “Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser,” Opt. Express 24, 24256–24263 (2016).
[Crossref]

Churkin, D. V.

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-induced Faraday instability laser,” Phys. Rev. Lett. 120, 213902 (2018).
[Crossref]

A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

Clark, W.

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Coen, S.

Coillet, A.

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89, 013835 (2014).
[Crossref]

Conforti, M.

F. Copie, M. Conforti, A. Kudlinski, S. Trillo, and A. Mussot, “Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity,” Opt. Lett. 42, 435–438 (2017).
[Crossref]

F. Copie, M. Conforti, A. Kudlinski, and A. Mussot, “Competing Turing and Faraday instabilities in longitudinally modulated passive resonators,” Phys. Rev. Lett. 116, 143901 (2016).
[Crossref]

Copie, F.

F. Copie, M. Conforti, A. Kudlinski, S. Trillo, and A. Mussot, “Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity,” Opt. Lett. 42, 435–438 (2017).
[Crossref]

F. Copie, M. Conforti, A. Kudlinski, and A. Mussot, “Competing Turing and Faraday instabilities in longitudinally modulated passive resonators,” Phys. Rev. Lett. 116, 143901 (2016).
[Crossref]

Cristiani, I.

Cui, J.

de Matos, C. J. S.

Doran, N. J.

Dudley, J.

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89, 013835 (2014).
[Crossref]

Dudley, J. M.

Erkintalo, M.

Feng, M.

Finot, C.

Fontana, F.

Franco, P.

Fu, B.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

Fu, W.

Genty, G.

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89, 013835 (2014).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35, 658–660 (2010).
[Crossref]

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

Grelu, Ph.

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

J. M. Soto-Crespo, Ph. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E 84, 016604 (2011).
[Crossref]

Haelterman, M.

Hammani, K.

Han, H.

Hang, C.

K. Staliunas, C. Hang, and V. V. Konotop, “Parametric patterns in optical fiber ring nonlinear resonators,” Phys. Rev. A 88, 023846 (2013).
[Crossref]

Hernández-Cordero, J.

M. Rochette, L. R. Chen, K. Sun, and J. Hernández-Cordero, “Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering,” IEEE Photon. Technol. Lett. 20, 1497–1499 (2008).
[Crossref]

Hu, D.

P. Wang, D. Hu, K. Zhao, L. Jiao, X. Xiao, and C. Yang, “Dissipative rogue waves among noise-like pulses in a Tm fiber laser mode locked by a monolayer MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1800207 (2018).
[Crossref]

Hu, M.

Hua, Y.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

Ilday, F.

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Jiao, L.

P. Wang, D. Hu, K. Zhao, L. Jiao, X. Xiao, and C. Yang, “Dissipative rogue waves among noise-like pulses in a Tm fiber laser mode locked by a monolayer MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1800207 (2018).
[Crossref]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

Kennedy, R. E.

Konotop, V. V.

K. Staliunas, C. Hang, and V. V. Konotop, “Parametric patterns in optical fiber ring nonlinear resonators,” Phys. Rev. A 88, 023846 (2013).
[Crossref]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Kudlinski, A.

F. Copie, M. Conforti, A. Kudlinski, S. Trillo, and A. Mussot, “Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity,” Opt. Lett. 42, 435–438 (2017).
[Crossref]

F. Copie, M. Conforti, A. Kudlinski, and A. Mussot, “Competing Turing and Faraday instabilities in longitudinally modulated passive resonators,” Phys. Rev. Lett. 116, 143901 (2016).
[Crossref]

Larger, L.

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89, 013835 (2014).
[Crossref]

Lecaplain, C.

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

Lei, M.

Liao, R.

Liu, F.

Liu, W.

Liu, Z.

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication (IEEE, 1998), pp. 475–476.

Martinez, A.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Midrio, M.

Millot, G.

Mussot, A.

F. Copie, M. Conforti, A. Kudlinski, S. Trillo, and A. Mussot, “Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity,” Opt. Lett. 42, 435–438 (2017).
[Crossref]

F. Copie, M. Conforti, A. Kudlinski, and A. Mussot, “Competing Turing and Faraday instabilities in longitudinally modulated passive resonators,” Phys. Rev. Lett. 116, 143901 (2016).
[Crossref]

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

North, T.

T. North, A. Al-kadry, and M. Rochette, “Analysis of self-pulsating sources based on cascaded regeneration and soliton self-frequency shifting,” IEEE J. Sel. Top. Quantum Electron. 20, 612–618 (2014).
[Crossref]

T. North and M. Rochette, “Regenerative self-pulsating sources of large bandwidths,” Opt. Lett. 39, 174–177 (2014).
[Crossref]

Olivier, M.

Pang, L.

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Peng, J.

J. Peng, N. Tarasov, S. Sugavanam, and D. Churkin, “Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser,” Opt. Express 24, 24256–24263 (2016).
[Crossref]

Perego, A. M.

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-induced Faraday instability laser,” Phys. Rev. Lett. 120, 213902 (2018).
[Crossref]

A. M. Perego, S. K. Turitsyn, and K. Staliunas, “Gain through losses in nonlinear optics,” Light Sci. Appl. 7, 43 (2018).
[Crossref]

A. M. Perego, “High-repetition-rate, multi-pulse all-normal-dispersion fiber laser,” Opt. Lett. 42, 3574–3577 (2017).
[Crossref]

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

Pitois, S.

Popov, S. V.

Provost, L.

Raciukaitis, G.

Regelskis, K.

Ren, Y.

Richardson, D. J.

S. Pitois, C. Finot, L. Provost, and D. J. Richardson, “Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators,” J. Opt. Soc. Am. B 25, 1537–1547 (2008).
[Crossref]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Rochette, M.

T. North, A. Al-kadry, and M. Rochette, “Analysis of self-pulsating sources based on cascaded regeneration and soliton self-frequency shifting,” IEEE J. Sel. Top. Quantum Electron. 20, 612–618 (2014).
[Crossref]

T. North and M. Rochette, “Regenerative self-pulsating sources of large bandwidths,” Opt. Lett. 39, 174–177 (2014).
[Crossref]

K. Sun, M. Rochette, and L. R. Chen, “Output characterization of a self-pulsating and aperiodic optical fiber source based on cascaded regeneration,” Opt. Express 17, 10419–10432 (2009).
[Crossref]

M. Rochette, L. R. Chen, K. Sun, and J. Hernández-Cordero, “Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering,” IEEE Photon. Technol. Lett. 20, 1497–1499 (2008).
[Crossref]

Romagnoli, M.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Runge, A. F. J.

Shen, Z.

Sidorenko, P.

Smirnov, S. V.

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-induced Faraday instability laser,” Phys. Rev. Lett. 120, 213902 (2018).
[Crossref]

Smith, N. J.

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Song, F.

Song, Y.

Soto-Crespo, J. M.

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

J. M. Soto-Crespo, Ph. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E 84, 016604 (2011).
[Crossref]

Staliunas, K.

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-induced Faraday instability laser,” Phys. Rev. Lett. 120, 213902 (2018).
[Crossref]

A. M. Perego, S. K. Turitsyn, and K. Staliunas, “Gain through losses in nonlinear optics,” Light Sci. Appl. 7, 43 (2018).
[Crossref]

A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

K. Staliunas, C. Hang, and V. V. Konotop, “Parametric patterns in optical fiber ring nonlinear resonators,” Phys. Rev. A 88, 023846 (2013).
[Crossref]

Sugavanam, S.

J. Peng, N. Tarasov, S. Sugavanam, and D. Churkin, “Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser,” Opt. Express 24, 24256–24263 (2016).
[Crossref]

Sun, K.

K. Sun, M. Rochette, and L. R. Chen, “Output characterization of a self-pulsating and aperiodic optical fiber source based on cascaded regeneration,” Opt. Express 17, 10419–10432 (2009).
[Crossref]

M. Rochette, L. R. Chen, K. Sun, and J. Hernández-Cordero, “Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering,” IEEE Photon. Technol. Lett. 20, 1497–1499 (2008).
[Crossref]

Sun, Z.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Tarasov, N.

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

J. Peng, N. Tarasov, S. Sugavanam, and D. Churkin, “Rogue waves generation via nonlinear soliton collision in multiple-soliton state of a mode-locked fiber laser,” Opt. Express 24, 24256–24263 (2016).
[Crossref]

A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

Taylor, J. R.

Teng, H.

Tian, J.

Trillo, S.

Turitsyn, S. K.

A. M. Perego, S. K. Turitsyn, and K. Staliunas, “Gain through losses in nonlinear optics,” Light Sci. Appl. 7, 43 (2018).
[Crossref]

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

Viskontas, K.

Wabnitz, S.

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-induced Faraday instability laser,” Phys. Rev. Lett. 120, 213902 (2018).
[Crossref]

Wang, C.

Wang, P.

P. Wang, D. Hu, K. Zhao, L. Jiao, X. Xiao, and C. Yang, “Dissipative rogue waves among noise-like pulses in a Tm fiber laser mode locked by a monolayer MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1800207 (2018).
[Crossref]

Wei, Z.

Wise, F.

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

Wise, F. W.

Wright, L. G.

Xiao, X.

P. Wang, D. Hu, K. Zhao, L. Jiao, X. Xiao, and C. Yang, “Dissipative rogue waves among noise-like pulses in a Tm fiber laser mode locked by a monolayer MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1800207 (2018).
[Crossref]

C. Bao, X. Xiao, and C. Yang, “Spectral compression of a dispersion-managed mode-locked Tm:fiber laser at 1.9 μm,” IEEE Photon. Technol. Lett. 28, 497–500 (2016).
[Crossref]

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

Yan, X.

Yang, C.

P. Wang, D. Hu, K. Zhao, L. Jiao, X. Xiao, and C. Yang, “Dissipative rogue waves among noise-like pulses in a Tm fiber laser mode locked by a monolayer MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1800207 (2018).
[Crossref]

C. Bao, X. Xiao, and C. Yang, “Spectral compression of a dispersion-managed mode-locked Tm:fiber laser at 1.9 μm,” IEEE Photon. Technol. Lett. 28, 497–500 (2016).
[Crossref]

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

Yang, J.

Želudevicius, J.

Zhang, K.

Zhao, J.

Zhao, K.

P. Wang, D. Hu, K. Zhao, L. Jiao, X. Xiao, and C. Yang, “Dissipative rogue waves among noise-like pulses in a Tm fiber laser mode locked by a monolayer MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1800207 (2018).
[Crossref]

Zhu, H.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

Ziegler, Z. M.

Electron. Lett. (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2  μm,” IEEE J. Sel. Top. Quantum Electron. 20, 1100705 (2014).
[Crossref]

T. North, A. Al-kadry, and M. Rochette, “Analysis of self-pulsating sources based on cascaded regeneration and soliton self-frequency shifting,” IEEE J. Sel. Top. Quantum Electron. 20, 612–618 (2014).
[Crossref]

P. Wang, D. Hu, K. Zhao, L. Jiao, X. Xiao, and C. Yang, “Dissipative rogue waves among noise-like pulses in a Tm fiber laser mode locked by a monolayer MoS2 saturable absorber,” IEEE J. Sel. Top. Quantum Electron. 24, 1800207 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. Bao, X. Xiao, and C. Yang, “Spectral compression of a dispersion-managed mode-locked Tm:fiber laser at 1.9 μm,” IEEE Photon. Technol. Lett. 28, 497–500 (2016).
[Crossref]

M. Rochette, L. R. Chen, K. Sun, and J. Hernández-Cordero, “Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering,” IEEE Photon. Technol. Lett. 20, 1497–1499 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

A. M. Perego, S. K. Turitsyn, and K. Staliunas, “Gain through losses in nonlinear optics,” Light Sci. Appl. 7, 43 (2018).
[Crossref]

Nat. Commun. (1)

N. Tarasov, A. M. Perego, D. V. Churkin, K. Staliunas, and S. K. Turitsyn, “Mode-locking via dissipative Faraday instability,” Nat. Commun. 7, 12441 (2016).
[Crossref]

Nat. Photonics (2)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

Nature (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (13)

P. Sidorenko, W. Fu, L. G. Wright, M. Olivier, and F. W. Wise, “Self-seeded, multi-megawatt, Mamyshev oscillator,” Opt. Lett. 43, 2672–2675 (2018).
[Crossref]

F. Copie, M. Conforti, A. Kudlinski, S. Trillo, and A. Mussot, “Dynamics of Turing and Faraday instabilities in a longitudinally modulated fiber-ring cavity,” Opt. Lett. 42, 435–438 (2017).
[Crossref]

M. Erkintalo, G. Genty, and J. M. Dudley, “Giant dispersive wave generation through soliton collision,” Opt. Lett. 35, 658–660 (2010).
[Crossref]

T. North and M. Rochette, “Regenerative self-pulsating sources of large bandwidths,” Opt. Lett. 39, 174–177 (2014).
[Crossref]

A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Raman rogue waves in a partially mode-locked fiber laser,” Opt. Lett. 39, 319–322 (2014).
[Crossref]

K. Regelskis, J. Želudevičius, K. Viskontas, and G. Račiukaitis, “Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering,” Opt. Lett. 40, 5255–5258 (2015).
[Crossref]

K. Hammani, C. Finot, and G. Millot, “Emergence of extreme events in fiber-based parametric processes driven by a partially incoherent pump wave,” Opt. Lett. 34, 1138–1140 (2009).
[Crossref]

P. Franco, F. Fontana, I. Cristiani, M. Midrio, and M. Romagnoli, “Self-induced modulational-instability laser,” Opt. Lett. 20, 2009–2011 (1995).
[Crossref]

N. J. Smith and N. J. Doran, “Modulation instabilities in fibers with periodic dispersion management,” Opt. Lett. 21, 570–572 (1996).
[Crossref]

S. Coen and M. Haelterman, “Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulation instability in a passive fiber cavity,” Opt. Lett. 26, 39–41 (2001).
[Crossref]

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulation instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett. 27, 915–917 (2002).
[Crossref]

R. E. Kennedy, S. V. Popov, and J. R. Taylor, “Ytterbium gain band self-induced modulation instability laser,” Opt. Lett. 31, 167–168 (2006).
[Crossref]

A. M. Perego, “High-repetition-rate, multi-pulse all-normal-dispersion fiber laser,” Opt. Lett. 42, 3574–3577 (2017).
[Crossref]

Optica (3)

Photon. Res. (2)

Phys. Rev. A (2)

A. Coillet, J. Dudley, G. Genty, L. Larger, and Y. K. Chembo, “Optical rogue waves in whispering-gallery-mode resonators,” Phys. Rev. A 89, 013835 (2014).
[Crossref]

K. Staliunas, C. Hang, and V. V. Konotop, “Parametric patterns in optical fiber ring nonlinear resonators,” Phys. Rev. A 88, 023846 (2013).
[Crossref]

Phys. Rev. E (1)

J. M. Soto-Crespo, Ph. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E 84, 016604 (2011).
[Crossref]

Phys. Rev. Lett. (5)

A. M. Perego, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and K. Staliunas, “Pattern generation by dissipative parametric instability,” Phys. Rev. Lett. 116, 028701 (2016).
[Crossref]

A. M. Perego, S. V. Smirnov, K. Staliunas, D. V. Churkin, and S. Wabnitz, “Self-induced Faraday instability laser,” Phys. Rev. Lett. 120, 213902 (2018).
[Crossref]

C. Lecaplain, Ph. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

F. Ilday, J. Buckley, W. Clark, and F. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).
[Crossref]

F. Copie, M. Conforti, A. Kudlinski, and A. Mussot, “Competing Turing and Faraday instabilities in longitudinally modulated passive resonators,” Phys. Rev. Lett. 116, 143901 (2016).
[Crossref]

Other (1)

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication (IEEE, 1998), pp. 475–476.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Schematic diagram of the 2-μm fiber ring cavity in a Mamyshev oscillator configuration. OC, optical coupler; TDF, Tm-doped gain fiber; filter 1, longer-wavelength super-Gaussian spectral filter; filter 2, shorter-wavelength super-Gaussian spectral filter; passive fiber, the commercial normal dispersion fiber (NDF).
Fig. 2.
Fig. 2. Spatiotemporal dynamics of single pulse operation: (a) temporal spectral evolution during per cavity roundtrip. A, B, C, D, E, and F represent the TDF1, passive fiber1, filter1 + OC1, TDF2, passive fiber2, and filter2 + OC2; (b) temporal (blue) and frequency chirping (red) profiles after the interaction with the longer-wavelength filter; (c) spectral pulse profile (blue) after the longer-wavelength filter (red); (d) spectral evolution over 300 roundtrips at the output of OC1 (color scale for the optical intensity, in dB). The cavity parameters are g0=12.8, Esat=19.4  nJ, andΔΩ=7.0  nm.
Fig. 3.
Fig. 3. Spatiotemporal dynamics of soliton pair molecule operation: (a) temporal evolution during per cavity roundtrip. A, B, C, D, E, and F represent the TDF1, passive fiber1, filter1 + OC1, TDF2, passive fiber2, and filter2 + OC2; (b) temporal and frequency chirping profiles after the longer-wavelength filter; (c) spectral profiles after the longer-wavelength filter; (d) spectral evolution over 300 roundtrips at the output of OC1. The remaining parameters are g0=16.2, Esat=19.4  nJ, andΔΩ=7.0  nm.
Fig. 4.
Fig. 4. Spatiotemporal dynamics of random pulse train operation: (a) temporal and (c) spectral evolution over 300 roundtrips at the output of OC1; (b) temporal and (d) spectral evolution during per cavity roundtrip. A, B, C, D, E, and F represent the TDF1, passive fiber1, filter1 + OC1, TDF2, passive fiber2, and filter2 + OC2. The remaining parameters are g0=16.2, Esat=19.4  nJ, andΔΩ=5.4  nm.
Fig. 5.
Fig. 5. Spatiotemporal dynamics of regular pattern formation: (a) temporal and (c) spectral evolution over 300 roundtrips at the output of OC1; (b) temporal and (d) spectral evolution during per cavity roundtrip. A, B, C, D, E, and F represent the TDF1, passive fiber1, filter1 + OC1, TDF2, passive fiber2, and filter2 + OC2. The remaining parameters are g0=16.2, Esat=19.4  nJ, andΔΩ=4.6  nm.
Fig. 6.
Fig. 6. Spatiotemporal profiles of regular pattern formation: single pulse temporal profiles (a) before and (b) after the interaction with the longer-wavelength filter; (c) pulse train temporal and phase profiles after the longer-wavelength filter; (d) spectral profile after the longer-wavelength filter.
Fig. 7.
Fig. 7. Spatiotemporal dynamics of irregular pattern formation: (a) temporal and (c) spectral evolution over 300 roundtrips at the output of OC1; (b) temporal and (d) spectral evolution during per cavity roundtrip. A, B, C, D, E, and F represent the TDF1, passive fiber1, filter1 + OC1, TDF2, passive fiber2, and filter2 + OC2. The remaining parameters are g0=16.2, Esat=19.4  nJ, andΔΩ=4.2  nm.
Fig. 8.
Fig. 8. Spatiotemporal dynamics of irregular pattern formation: (a) temporal and (c) spectral evolution over 300 roundtrips at the output of OC1; (b) temporal and (d) spectral evolution during per cavity roundtrip. A, B, C, D, E, and F represent the TDF1, passive fiber1, filter1 + OC1, TDF2, passive fiber2, and filter2 + OC2. The remaining parameters are g0=16.2, Esat=19.4  nJ, andΔΩ=2.8  nm.
Fig. 9.
Fig. 9. Temporal and phase profiles of the RWs’ generation after the longer-wavelength filter. The remaining parameters are g0=16.2, Esat=19.4  nJ, andΔΩ=2.0  nm.
Fig. 10.
Fig. 10. Influence of the frequency detuning between the filters on RWs generation: histogram on log scale showing the statistics distribution of the pulse intensity for ΔΩ values of (a) 4.6 nm; (b) 5.4 nm; (c) 4.2 nm; (d) 2.8 nm; and (e) 2.0 nm; (f) PDF and number of events versus the frequency detuning between the filters. The remaining parameters are g0=16.2 and Esat=19.4  nJ.
Fig. 11.
Fig. 11. Spatiotemporal dynamics of regular pattern formation in the near-zero dispersion fiber ring setup (see text): (a) temporal and (c) spectral evolution over 300 roundtrips at the output of OC1; (b) temporal and (d) spectral evolution during per cavity roundtrip. A, B, C, D, E, and F represent the TDF1, passive fiber1, filter1+OC1, TDF2, passive fiber2, and filter2+OC2. The remaining parameters are g0=16.8, Esat=16.4  nJ, andΔΩ=5.4  nm.
Fig. 12.
Fig. 12. Spatiotemporal profiles of regular pattern formation: single pulse temporal profiles (a) before and (b) after the interaction with the longer-wavelength filter; (c) pulse train temporal and phase profiles after the longer-wavelength filter; (d) spectral profile after the longer-wavelength filter.
Fig. 13.
Fig. 13. Spatiotemporal dynamics of irregular pattern formation: (a) temporal and (b) spectral evolution over 300 roundtrips at the output of OC1 (the remaining parameters are g0=16.8, Esat=16.4  nJ, andΔΩ=3.6  nm); (c) temporal and (d) spectral evolution over 300 roundtrips at the output of OC1 (the remaining parameters are g0=16.8, Esat=16.4  nJ, andΔΩ=2.4  nm).
Fig. 14.
Fig. 14. Influence of the frequency detuning between the filters on RWs’ generation: histogram on log scale showing the statistics distribution of the pulse intensity for ΔΩ values of (a) 3.7 nm; (b) 2.6 nm; and (c) 2.2 nm; (d) PDF and number of events versus the frequency detuning between the filters. The remaining parameters are g0=16.8 and Esat=16.4  nJ.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Az=iβ222At2+iγ|A|2A+g(z)A+g(z)Ωg22At2,
g(z)=g0×exp(1Esat|A|2dt),