Abstract

We propose and experimentally demonstrate a novel physical layer encryption scheme for high-speed optical communication. A 10 Gb/s on-off keying signal is secretly transmitted over 100 km standard single-mode fiber. The intensity-modulated message is secured by the encryption mechanism, which is composed of an external noise source and an internal time-delayed feedback loop. The external noise serves as an entropy source with sufficient randomness. The feedback loop structure in the transmitter introduces a time-domain encryption key space, and a corresponding open-loop configuration at the receiver side is used for synchronization and decryption. Experiment results show the effectiveness of the proposed scheme. For a legitimate terminal, bit error rate below 108 can be obtained. Decryption degradations with the mismatch of different hardware parameters are researched. The time delay in the feedback loop provides a sensitive encryption key. For other hardware parameters, the system is robust enough for synchronization. Meanwhile, the time-delay signature of the loop is able to be well concealed by the external noise. Moreover, the proposed scheme can support density wavelength division multiplexing transmission with a relatively simple structure. This work also provides a new concept to establish optical secure communication by combining a time-delayed feedback chaotic system and random noise.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Maximizing the security of chaotic optical communications

T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu
Opt. Express 24(20) 23439-23449 (2016)

Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop

Xingxing Jiang, Mengfan Cheng, Fengguang Luo, Lei Deng, Songnian Fu, Changjian Ke, Minming Zhang, Ming Tang, Ping Shum, and Deming Liu
Opt. Express 24(25) 28804-28814 (2016)

Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback

Ning Jiang, Anke Zhao, Shiqin Liu, Chenpeng Xue, and Kun Qiu
Opt. Express 26(25) 32404-32416 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Wu, B. J. Shastri, and P. R. Prucnal, “Secure communication in fiber-optic networks,” in Emerging Trends in ICT Security, B. Akhgar and H. Arabnia, eds. (Elsevier, 2014), pp. 173–183.
  2. E. Wohlgemuth, Y. Yoffe, T. Yeminy, Z. Zalevsky, and D. Sadot, “Photonic-layer encryption and steganography over IM/DD communication system,” Opt. Express 26, 32691–32703 (2018).
    [Crossref]
  3. R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435 (2010).
    [Crossref]
  4. K. Tanizawa and F. Futami, “Digital coherent 20-Gbit/s DP-PSK Y-00 quantum stream cipher transmission over 800-km SSMF,” in Optical Fiber Communication Conference (OFC), OSA Technical Digest (Optical Society of America, 2019), paper Th1J.7.
  5. N. Jiang, A. Zhao, C. Xue, J. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44, 1536–1539 (2019).
    [Crossref]
  6. B. Wu, M. P. Chang, B. J. Shastri, P. Y. Ma, and P. R. Prucnal, “Dispersion deployment and compensation for optical steganography based on noise,” IEEE Photon. Technol. Lett. 28, 421–424 (2016).
    [Crossref]
  7. B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21, 2065–2071 (2013).
    [Crossref]
  8. B. Wu, Z. Wang, B. J. Shastri, M. P. Chang, N. A. Frost, and P. R. Prucnal, “Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise,” Opt. Express 22, 954–961 (2014).
    [Crossref]
  9. B. Wu, Y. Huang, S. Zhang, B. J. Shastri, and P. R. Prucnal, “Long range secure key distribution over multiple amplified fiber spans based on environmental instabilities,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper SF1F.4.
  10. B. Wu, M. P. Chang, B. J. Shastri, Z. Wang, and P. R. Prucnal, “Analog noise protected optical encryption with two-dimensional key space,” Opt. Express 22, 14568–14574 (2014).
    [Crossref]
  11. Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.
  12. S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, and F. Jiang, “Research on optical security based on simulated noise induced encryption scheme,” J. Phys. Conf. Ser. 1176, 062059 (2019).
    [Crossref]
  13. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
    [Crossref]
  14. M. R. Chatterjee, A. Mohamed, and F. S. Almehmadi, “Secure free-space communication, turbulence mitigation, and other applications using acousto-optic chaos,” Appl. Opt. 57, C1–C13 (2018).
    [Crossref]
  15. F. S. Almehmadi and M. R. Chatterjee, “Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation,” Appl. Opt. 54, 195–203 (2015).
    [Crossref]
  16. F. S. Almehmadi and M. R. Chatterjee, “Improved performance of analog and digital acousto-optic modulation with feedback under profiled beam propagation for secure communication using chaos,” Opt. Eng. 53, 126102 (2014).
    [Crossref]
  17. A. Mohamed and M. R. Chatterjee, “Image intensity recovery with mitigation in the presence of gamma-gamma atmospheric turbulence using encrypted chaos,” Opt. Eng. 58, 036110 (2019).
    [Crossref]
  18. J. Ke, L. Yi, G. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43, 1323–1326 (2018).
    [Crossref]
  19. D. M. Wang, L. S. Wang, Y. Y. Guo, Y. C. Wang, and A. B. Wang, “Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser,” Opt. Express 27, 3065–3073 (2019).
    [Crossref]
  20. T. T. Hou, L. L. Yi, X. L. Yang, J. X. Ke, Y. Hu, Q. Yang, P. Zhou, and W. S. Hu, “Maximizing the security of chaotic optical communications,” Opt. Express 24, 23439–23449 (2016).
    [Crossref]
  21. V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
    [Crossref]
  22. V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, “Time delay identification in chaotic cryptosystems ruled by delay-differential equations,” J. Opt. Technol. 72, 373–377 (2005).
    [Crossref]
  23. Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
    [Crossref]
  24. P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
    [Crossref]
  25. C. Xue, N. Jiang, G. Li, C. Wang, S. Lin, Y. Lv, and K. Qiu, “Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu5A.105.
  26. D. Wang, L. Wang, T. Zhao, H. Gao, Y. Wang, X. Chen, and A. Wang, “Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG,” Opt. Express 25, 10911–10924 (2017).
    [Crossref]
  27. R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
    [Crossref]
  28. R. Nguimdo and P. Colet, “Electro-optic phase chaos systems with an internal variable and a digital key,” Opt. Express 20, 25333–25344 (2012).
    [Crossref]
  29. C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41, 3690–3693 (2016).
    [Crossref]
  30. M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22, 5241–5251 (2014).
    [Crossref]
  31. N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40, 4416–4419 (2015).
    [Crossref]
  32. P. Mu, W. Pan, L. Yan, B. Luo, N. Li, and M. Xu, “Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections,” IEEE Photon. Technol. Lett. 28, 131–134 (2016).
    [Crossref]
  33. C. Cheng, Y. Chen, and F. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23, 2308–2319 (2015).
    [Crossref]
  34. A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21, 531–540 (2015).
    [Crossref]
  35. J. Wu, Z. Wu, G. Xia, and G. Feng, “Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system,” Opt. Express 20, 1741–1753 (2012).
    [Crossref]
  36. N. Jiang, C. Wang, C. Xue, G. Li, S. Lin, and K. Qiu, “Generation of flat wideband chaos with suppressed time delay signature by using optical time lens,” Opt. Express 25, 14359–14367 (2017).
    [Crossref]
  37. M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
    [Crossref]
  38. A. Zhao, N. Jiang, C. Wang, J. Zhang, and K. Qiu, “Wideband complexity-enhanced optical chaos generation and its application for fast random bit generation,” in CLEO Pacific Rim Conference, OSA Technical Digest (Optical Society of America, 2018), paper F2D.4.
  39. D. Rontani, E. Mercier, D. Wolfersberger, and M. Sciamanna, “Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback,” Opt. Lett. 41, 4637–4640 (2016).
    [Crossref]
  40. P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, and Y. Wang, “Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter,” Opt. Express 27, 17859–17867 (2019).
    [Crossref]
  41. H. Kantz and E. Olbrich, “Coarse grained dynamical entropies: investigation of high-entropic dynamical systems,” Physica A 280, 34–48 (2000).
    [Crossref]
  42. Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, and D. Liu, “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 36–40.
  43. H. Chi, X. Zou, and J. Yao, “Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device,” J. Lightwave Technol. 27, 511–521 (2009).
    [Crossref]
  44. M. Li, X. Zhang, Y. Hong, Y. Zhang, Y. Shi, and X. Chen, “Confidentiality-enhanced chaotic optical communication system with variable RF amplifier gain,” Opt. Express 27, 25953–25963 (2019).
    [Crossref]
  45. L. Yi, J. Ke, G. Xia, and W. Hu, “Phase chaos generation and security enhancement by introducing fine-controllable dispersion,” J. Opt. 20, 024004 (2018).
    [Crossref]
  46. B. Romeira, F. Kong, W. Li, J. M. L. Figueiredo, J. Javaloyes, and J. Yao, “Broadband chaotic signals and breather oscillations in an optoelectronic oscillator incorporating a microwave photonic filter,” J. Lightwave Technol. 32, 3933–3942 (2014).
    [Crossref]
  47. R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization,” Phys. Rev. E 80, 026207 (2009).
    [Crossref]
  48. Q. Li, D. Chen, Q. Bao, R. Zeng, and M. Hu, “Numerical investigations of synchronization and communication based on an electro-optic phase chaos system with concealment of time delay,” Appl. Opt. 58, 1715–1722 (2019).
    [Crossref]
  49. M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
    [Crossref]
  50. C. Wang, Y. Ji, H. Wang, and L. Bai, “Security-enhanced electro-optic feedback phase chaotic system based on nonlinear coupling of two delayed interfering branches,” IEEE Photon. J. 10, 7203415 (2018).
    [Crossref]
  51. Q. C. Zhao and H. X. Yin, “Performance analysis of dense wavelength division multiplexing secure communications with multiple chaotic optical channels,” Opt. Commun. 285, 693–698 (2012).
    [Crossref]
  52. N. Jiang, J. Wang, D. Liu, C. Xue, and K. Qiu, “Secure WDM-PON based on chaos synchronization and subcarrier modulation multiplexing,” J. Opt. Soc. Am. B 33, 637–642 (2016).
    [Crossref]

2019 (8)

N. Jiang, A. Zhao, C. Xue, J. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44, 1536–1539 (2019).
[Crossref]

S. Wang, Z. Zou, T. Xing, J. Wang, Z. Wang, and F. Jiang, “Research on optical security based on simulated noise induced encryption scheme,” J. Phys. Conf. Ser. 1176, 062059 (2019).
[Crossref]

A. Mohamed and M. R. Chatterjee, “Image intensity recovery with mitigation in the presence of gamma-gamma atmospheric turbulence using encrypted chaos,” Opt. Eng. 58, 036110 (2019).
[Crossref]

D. M. Wang, L. S. Wang, Y. Y. Guo, Y. C. Wang, and A. B. Wang, “Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser,” Opt. Express 27, 3065–3073 (2019).
[Crossref]

Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
[Crossref]

P. Li, Q. Cai, J. Zhang, B. Xu, Y. Liu, A. Bogris, K. A. Shore, and Y. Wang, “Observation of flat chaos generation using an optical feedback multi-mode laser with a band-pass filter,” Opt. Express 27, 17859–17867 (2019).
[Crossref]

M. Li, X. Zhang, Y. Hong, Y. Zhang, Y. Shi, and X. Chen, “Confidentiality-enhanced chaotic optical communication system with variable RF amplifier gain,” Opt. Express 27, 25953–25963 (2019).
[Crossref]

Q. Li, D. Chen, Q. Bao, R. Zeng, and M. Hu, “Numerical investigations of synchronization and communication based on an electro-optic phase chaos system with concealment of time delay,” Appl. Opt. 58, 1715–1722 (2019).
[Crossref]

2018 (5)

2017 (2)

2016 (6)

2015 (6)

M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
[Crossref]

F. S. Almehmadi and M. R. Chatterjee, “Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation,” Appl. Opt. 54, 195–203 (2015).
[Crossref]

N. Li, W. Pan, A. Locquet, and D. S. Citrin, “Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection,” Opt. Lett. 40, 4416–4419 (2015).
[Crossref]

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

C. Cheng, Y. Chen, and F. Lin, “Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning,” Opt. Express 23, 2308–2319 (2015).
[Crossref]

A. B. Wang, B. J. Wang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron. 21, 531–540 (2015).
[Crossref]

2014 (5)

2013 (2)

B. Wu, Z. Wang, Y. Tian, M. P. Fok, B. J. Shastri, D. R. Kanoff, and P. R. Prucnal, “Optical steganography based on amplified spontaneous emission noise,” Opt. Express 21, 2065–2071 (2013).
[Crossref]

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339–343 (2013).
[Crossref]

2012 (3)

2011 (1)

R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[Crossref]

2010 (1)

R. Lavrov, M. Jacquot, and L. Larger, “Nonlocal nonlinear electro-optic phase dynamics demonstrating 10  Gb/s chaos communications,” IEEE J. Quantum Electron. 46, 1430–1435 (2010).
[Crossref]

2009 (2)

R. Lavrov, M. Peil, M. Jacquot, L. Larger, V. Udaltsov, and J. Dudley, “Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization,” Phys. Rev. E 80, 026207 (2009).
[Crossref]

H. Chi, X. Zou, and J. Yao, “Analytical models for phase-modulation-based microwave photonic systems with phase modulation to intensity modulation conversion using a dispersive device,” J. Lightwave Technol. 27, 511–521 (2009).
[Crossref]

2005 (2)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

V. S. Udaltsov, L. Larger, J. P. Goedgebuer, A. Locquet, and D. S. Citrin, “Time delay identification in chaotic cryptosystems ruled by delay-differential equations,” J. Opt. Technol. 72, 373–377 (2005).
[Crossref]

2003 (1)

V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
[Crossref]

2000 (1)

H. Kantz and E. Olbrich, “Coarse grained dynamical entropies: investigation of high-entropic dynamical systems,” Physica A 280, 34–48 (2000).
[Crossref]

Almehmadi, F. S.

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Bai, L.

C. Wang, Y. Ji, H. Wang, and L. Bai, “Security-enhanced electro-optic feedback phase chaotic system based on nonlinear coupling of two delayed interfering branches,” IEEE Photon. J. 10, 7203415 (2018).
[Crossref]

Bao, Q.

Bao, X.

Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
[Crossref]

Bogris, A.

Cai, Q.

Chang, M. P.

Chatterjee, M. R.

A. Mohamed and M. R. Chatterjee, “Image intensity recovery with mitigation in the presence of gamma-gamma atmospheric turbulence using encrypted chaos,” Opt. Eng. 58, 036110 (2019).
[Crossref]

M. R. Chatterjee, A. Mohamed, and F. S. Almehmadi, “Secure free-space communication, turbulence mitigation, and other applications using acousto-optic chaos,” Appl. Opt. 57, C1–C13 (2018).
[Crossref]

F. S. Almehmadi and M. R. Chatterjee, “Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation,” Appl. Opt. 54, 195–203 (2015).
[Crossref]

F. S. Almehmadi and M. R. Chatterjee, “Improved performance of analog and digital acousto-optic modulation with feedback under profiled beam propagation for secure communication using chaos,” Opt. Eng. 53, 126102 (2014).
[Crossref]

Chen, D.

Chen, L.

Y. Xua, L. Zhang, P. Lu, S. Mihailov, L. Chen, and X. Bao, “Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback,” Opt. Laser Technol. 109, 654–658 (2019).
[Crossref]

Chen, X.

Chen, Y.

Cheng, C.

Cheng, M.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
[Crossref]

M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22, 5241–5251 (2014).
[Crossref]

Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.

Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, and D. Liu, “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 36–40.

Chi, H.

Citrin, D. S.

Colet, P.

R. Nguimdo and P. Colet, “Electro-optic phase chaos systems with an internal variable and a digital key,” Opt. Express 20, 25333–25344 (2012).
[Crossref]

R. M. Nguimdo, P. Colet, L. Larger, and L. Pesquera, “Digital key for chaos communication performing time delay concealment,” Phys. Rev. Lett. 107, 034103 (2011).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438, 343–346 (2005).
[Crossref]

Cuenot, J.-B.

V. S. Udaltsov, J. P. Goedgebuer, L. Larger, J.-B. Cuenot, P. Levy, and W. T. Rhodes, “Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations,” Phys. Lett. A 308, 54–60 (2003).
[Crossref]

Deng, L.

M. Cheng, X. Gao, L. Deng, L. Liu, Y. Deng, S. Fu, M. Zhang, and D. Liu, “Time-delay concealment in a three-dimensional electro-optic chaos system,” IEEE Photon. Technol. Lett. 27, 1030–1033 (2015).
[Crossref]

M. Cheng, L. Deng, X. Gao, H. Li, and M. Tang, “Security-enhanced OFDM-PON using hybrid chaotic system,” IEEE Photon. Technol. Lett. 27, 326–329 (2015).
[Crossref]

M. Cheng, L. Deng, H. Li, and D. Liu, “Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation,” Opt. Express 22, 5241–5251 (2014).
[Crossref]

Q. Yu, Z. Zhao, L. Deng, M. Cheng, M. Zhang, S. Fu, and D. Liu, “Secure optical communication system based on ASE noise with no need for key distribution,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 47–51.

Y. Fu, M. Cheng, X. Jiang, L. Deng, M. Zhang, and D. Liu, “High-speed optical secure communication system using phase modulated random noise,” in 10th International Conference on Advanced Infocomm Technology (2018), pp. 36–40.

Deng, T.

P. Xiao, Z. M. Wu, J. G. Wu, L. Jiang, T. Deng, X. Tang, L. Fan, and G. Q. Xia, “Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback,” Opt. Commun. 286, 339