Abstract

The nonreciprocal circular dichroism and Faraday rotation effect for terahertz (THz) waves in longitudinally magnetized InSb were investigated by theoretical and experimental studies in the THz regime, which indicated its ability for a THz circularly polarized isolator, THz circular polarizer, tunable polarization converter, and polarization modulator by manipulation of different magnetic fields. Furthermore, we demonstrated the InSb plasmonics based on its magneto-optical effects combined with artificial microstructure. We found the magneto-optical enhancement mechanisms in this magneto-plasmonic structure, achieving broadband near-perfect orthogonal linear polarization conversion modulated by the weak magnetic field in an experiment with an extinction ratio of 33 dB. Moreover, the magneto-optical modulation with an amplitude modulation depth of 95.8% can be achieved by this device under a weak magnetic field of 150 mT. InSb and its magneto-plasmonic device have broad potential for a THz isolator, magneto-optical modulator, and polarization convertor in THz application systems.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz polarization converter and one-way transmission based on double-layer magneto-plasmonics of magnetized InSb

Fei Fan, Shi-Tong Xu, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 24(23) 26431-26443 (2016)

Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens

Fei Fan, Sai Chen, Xiang-Hui Wang, and Sheng-Jiang Chang
Opt. Express 21(7) 8614-8621 (2013)

Terahertz isolator based on nonreciprocal magneto-metasurface

Sai Chen, Fei Fan, Xianghui Wang, Pengfei Wu, Hui Zhang, and Shengjiang Chang
Opt. Express 23(2) 1015-1024 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5, 223–229 (2015).
    [Crossref]
  3. X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
    [Crossref]
  4. Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
    [Crossref]
  5. Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
    [Crossref]
  6. V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy, “Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas,” IEEE Trans. Wireless Commun. 16, 1791–1808 (2017).
    [Crossref]
  7. C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
    [Crossref]
  8. K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
    [Crossref]
  9. J.-P. Yu, S. Chen, F. Fan, J.-R. Cheng, S.-T. Xu, X.-H. Wang, and S.-J. Chang, “Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field,” Opt. Express 26, 663–673 (2018).
    [Crossref]
  10. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
    [Crossref]
  11. F. Fan, S.-J. Chang, W.-H. Gu, X.-H. Wang, and A.-Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24, 2080–2083 (2012).
    [Crossref]
  12. T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20, 19484–19492 (2012).
    [Crossref]
  13. F. Fan, S. Chen, W. Lin, Y.-P. Miao, S.-J. Chang, B. Liu, X.-H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103, 161115 (2013).
    [Crossref]
  14. S. Chen, F. Fan, X. He, M. Chen, and S. Chang, “Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing,” Appl. Opt. 54, 9177–9182 (2015).
    [Crossref]
  15. M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
    [Crossref]
  16. M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
    [Crossref]
  17. M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105, 151108 (2014).
    [Crossref]
  18. A. Shuvaev, G. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106, 107404 (2011).
    [Crossref]
  19. A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant Faraday rotation in graphene metasurfaces,” Appl. Phys. Lett. 101, 231605 (2012).
    [Crossref]
  20. M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
    [Crossref]
  21. J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
    [Crossref]
  22. B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett. 37, 1895–1897 (2012).
    [Crossref]
  23. B. Hu, Q. J. Wang, and Y. Zhang, “Slowing down terahertz waves with tunable group velocities in a broad frequency range by surface magneto plasmons,” Opt. Express 20, 10071–10076 (2012).
    [Crossref]
  24. P. Kumar, M. Kumar, and V. Tripathi, “Linear mode conversion of terahertz radiation into terahertz surface magnetoplasmons on a rippled surface of magnetized n-InSb,” Opt. Lett. 41, 1408–1411 (2016).
    [Crossref]
  25. B. H. Cheng, H. W. Chen, K. J. Chang, Y.-C. Lan, and D. P. Tsai, “Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution,” Sci. Rep. 5, 18172 (2015).
    [Crossref]
  26. X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
    [Crossref]
  27. J. Chochol, K. Postava, M. Čada, and J. Pištora, “Experimental demonstration of magnetoplasmon polariton at InSb (InAs)/dielectric interface for terahertz sensor application,” Sci. Rep. 7, 13117 (2017).
    [Crossref]
  28. S. Lin, S. Silva, J. Zhou, and D. Talbayev, “A one-way mirror: high-performance terahertz optical isolator based on magnetoplasmonics,” Adv. Opt. Mater. 6, 1800572 (2018).
    [Crossref]
  29. F. Fan, S. Chen, X. Wang, and S. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21, 8614–8621 (2013).
    [Crossref]
  30. S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23, 1015–1024 (2015).
    [Crossref]
  31. S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
    [Crossref]
  32. L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
    [Crossref]
  33. M. Oszwałldowski and M. Zimpel, “Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb,” J. Phys. Chem. Solids 49, 1179–1185 (1988).
    [Crossref]
  34. K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2008), pp. 475–576.

2018 (2)

J.-P. Yu, S. Chen, F. Fan, J.-R. Cheng, S.-T. Xu, X.-H. Wang, and S.-J. Chang, “Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field,” Opt. Express 26, 663–673 (2018).
[Crossref]

S. Lin, S. Silva, J. Zhou, and D. Talbayev, “A one-way mirror: high-performance terahertz optical isolator based on magnetoplasmonics,” Adv. Opt. Mater. 6, 1800572 (2018).
[Crossref]

2017 (5)

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

J. Chochol, K. Postava, M. Čada, and J. Pištora, “Experimental demonstration of magnetoplasmon polariton at InSb (InAs)/dielectric interface for terahertz sensor application,” Sci. Rep. 7, 13117 (2017).
[Crossref]

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy, “Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas,” IEEE Trans. Wireless Commun. 16, 1791–1808 (2017).
[Crossref]

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

2016 (3)

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref]

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref]

P. Kumar, M. Kumar, and V. Tripathi, “Linear mode conversion of terahertz radiation into terahertz surface magnetoplasmons on a rippled surface of magnetized n-InSb,” Opt. Lett. 41, 1408–1411 (2016).
[Crossref]

2015 (5)

B. H. Cheng, H. W. Chen, K. J. Chang, Y.-C. Lan, and D. P. Tsai, “Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution,” Sci. Rep. 5, 18172 (2015).
[Crossref]

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23, 1015–1024 (2015).
[Crossref]

S. Chen, F. Fan, X. He, M. Chen, and S. Chang, “Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing,” Appl. Opt. 54, 9177–9182 (2015).
[Crossref]

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5, 223–229 (2015).
[Crossref]

2014 (2)

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105, 151108 (2014).
[Crossref]

2013 (5)

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref]

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S.-J. Chang, B. Liu, X.-H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103, 161115 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

F. Fan, S. Chen, X. Wang, and S. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21, 8614–8621 (2013).
[Crossref]

2012 (7)

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant Faraday rotation in graphene metasurfaces,” Appl. Phys. Lett. 101, 231605 (2012).
[Crossref]

B. Hu, Q. J. Wang, and Y. Zhang, “Broadly tunable one-way terahertz plasmonic waveguide based on nonreciprocal surface magneto plasmons,” Opt. Lett. 37, 1895–1897 (2012).
[Crossref]

B. Hu, Q. J. Wang, and Y. Zhang, “Slowing down terahertz waves with tunable group velocities in a broad frequency range by surface magneto plasmons,” Opt. Express 20, 10071–10076 (2012).
[Crossref]

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

F. Fan, S.-J. Chang, W.-H. Gu, X.-H. Wang, and A.-Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24, 2080–2083 (2012).
[Crossref]

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20, 19484–19492 (2012).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

2011 (1)

A. Shuvaev, G. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106, 107404 (2011).
[Crossref]

2010 (1)

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

1988 (1)

M. Oszwałldowski and M. Zimpel, “Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb,” J. Phys. Chem. Solids 49, 1179–1185 (1988).
[Crossref]

Adams, C. S.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Al-Naib, I.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105, 151108 (2014).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

Ang, S.

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

Arikawa, T.

Astakhov, G.

A. Shuvaev, G. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106, 107404 (2011).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Banerjee, K.

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Belyanin, A. A.

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20, 19484–19492 (2012).
[Crossref]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[Crossref]

Berry, C. W.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5, 223–229 (2015).
[Crossref]

Brüne, C.

A. Shuvaev, G. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106, 107404 (2011).
[Crossref]

Buhmann, H.

A. Shuvaev, G. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106, 107404 (2011).
[Crossref]

Cada, M.

J. Chochol, K. Postava, M. Čada, and J. Pištora, “Experimental demonstration of magnetoplasmon polariton at InSb (InAs)/dielectric interface for terahertz sensor application,” Sci. Rep. 7, 13117 (2017).
[Crossref]

Cai, X.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Chang, K. J.

B. H. Cheng, H. W. Chen, K. J. Chang, Y.-C. Lan, and D. P. Tsai, “Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution,” Sci. Rep. 5, 18172 (2015).
[Crossref]

Chang, S.

Chang, S.-J.

J.-P. Yu, S. Chen, F. Fan, J.-R. Cheng, S.-T. Xu, X.-H. Wang, and S.-J. Chang, “Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field,” Opt. Express 26, 663–673 (2018).
[Crossref]

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S.-J. Chang, B. Liu, X.-H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103, 161115 (2013).
[Crossref]

F. Fan, S.-J. Chang, W.-H. Gu, X.-H. Wang, and A.-Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24, 2080–2083 (2012).
[Crossref]

Chen, A.-Q.

F. Fan, S.-J. Chang, W.-H. Gu, X.-H. Wang, and A.-Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24, 2080–2083 (2012).
[Crossref]

Chen, H. W.

B. H. Cheng, H. W. Chen, K. J. Chang, Y.-C. Lan, and D. P. Tsai, “Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution,” Sci. Rep. 5, 18172 (2015).
[Crossref]

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Chen, M.

Chen, S.

Chen, Y.

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Cheng, B. H.

B. H. Cheng, H. W. Chen, K. J. Chang, Y.-C. Lan, and D. P. Tsai, “Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution,” Sci. Rep. 5, 18172 (2015).
[Crossref]

Cheng, J.-R.

Chia, E. E.

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Chochol, J.

J. Chochol, K. Postava, M. Čada, and J. Pištora, “Experimental demonstration of magnetoplasmon polariton at InSb (InAs)/dielectric interface for terahertz sensor application,” Sci. Rep. 7, 13117 (2017).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Clerici, M.

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

Crooker, S. A.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[Crossref]

Dalvit, D. A.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

de Melo, N. R.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Deng, L.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Deorani, P.

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Faist, J.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant Faraday rotation in graphene metasurfaces,” Appl. Phys. Lett. 101, 231605 (2012).
[Crossref]

Fan, F.

Fernández-Domínguez, A.

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

Gaskill, D. K.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Gu, J.

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

Gu, W.-H.

F. Fan, S.-J. Chang, W.-H. Gu, X.-H. Wang, and A.-Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24, 2080–2083 (2012).
[Crossref]

Han, J.

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

Hanham, S.

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

Hauri, C. P.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105, 151108 (2014).
[Crossref]

He, X.

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Hu, B.

Ionescu, A. M.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref]

Jadidi, M. M.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Jarrahi, M.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5, 223–229 (2015).
[Crossref]

Jenkins, G. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Jornet, J. M.

V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy, “Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas,” IEEE Trans. Wireless Commun. 16, 1791–1808 (2017).
[Crossref]

Klein, N.

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

Komarov, M.

V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy, “Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas,” IEEE Trans. Wireless Commun. 16, 1791–1808 (2017).
[Crossref]

Kondo, J. M.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Kono, J.

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20, 19484–19492 (2012).
[Crossref]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[Crossref]

Koucheryavy, Y.

V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy, “Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas,” IEEE Trans. Wireless Commun. 16, 1791–1808 (2017).
[Crossref]

Kumar, M.

Kumar, P.

Kuzmenko, A. B.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref]

Lan, Y.-C.

B. H. Cheng, H. W. Chen, K. J. Chang, Y.-C. Lan, and D. P. Tsai, “Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution,” Sci. Rep. 5, 18172 (2015).
[Crossref]

La-O-Vorakiat, C.

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Li, D.

K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2008), pp. 475–576.

Li, S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Liao, Y.

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

Lim, K.

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

Lim, K. P.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Lin, L.

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S.-J. Chang, B. Liu, X.-H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103, 161115 (2013).
[Crossref]

Lin, S.

S. Lin, S. Silva, J. Zhou, and D. Talbayev, “A one-way mirror: high-performance terahertz optical isolator based on magnetoplasmonics,” Adv. Opt. Mater. 6, 1800572 (2018).
[Crossref]

Lin, W.

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S.-J. Chang, B. Liu, X.-H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103, 161115 (2013).
[Crossref]

Liu, B.

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S.-J. Chang, B. Liu, X.-H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103, 161115 (2013).
[Crossref]

Liu, H.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Liu, J.

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Liu, P. Q.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Maier, S. A.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

Martin-Moreno, L.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Mazhorova, A.

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

Mendis, R.

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref]

Miao, Y.-P.

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S.-J. Chang, B. Liu, X.-H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103, 161115 (2013).
[Crossref]

Mittleman, D. M.

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[Crossref]

Moldovan, C.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref]

Molenkamp, L.

A. Shuvaev, G. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106, 107404 (2011).
[Crossref]

Moltchanov, D.

V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy, “Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas,” IEEE Trans. Wireless Commun. 16, 1791–1808 (2017).
[Crossref]

Morandotti, R.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105, 151108 (2014).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

Mosig, J. R.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref]

Myers-Ward, R. L.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Ngo, C.

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

Ngo, C. Y.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Nikitin, A. Y.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Nyakiti, L. O.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Oszwalldowski, M.

M. Oszwałldowski and M. Zimpel, “Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb,” J. Phys. Chem. Solids 49, 1179–1185 (1988).
[Crossref]

Ozaki, T.

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

Ozturk, Y.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105, 151108 (2014).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

Peccianti, M.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105, 151108 (2014).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

Pendry, J.

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

Perruisseau-Carrier, J.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant Faraday rotation in graphene metasurfaces,” Appl. Phys. Lett. 101, 231605 (2012).
[Crossref]

Petrov, V.

V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy, “Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas,” IEEE Trans. Wireless Commun. 16, 1791–1808 (2017).
[Crossref]

Pimenov, A.

A. Shuvaev, G. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106, 107404 (2011).
[Crossref]

Pištora, J.

J. Chochol, K. Postava, M. Čada, and J. Pištora, “Experimental demonstration of magnetoplasmon polariton at InSb (InAs)/dielectric interface for terahertz sensor application,” Sci. Rep. 7, 13117 (2017).
[Crossref]

Plum, E.

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

Postava, K.

J. Chochol, K. Postava, M. Čada, and J. Pištora, “Experimental demonstration of magnetoplasmon polariton at InSb (InAs)/dielectric interface for terahertz sensor application,” Sci. Rep. 7, 13117 (2017).
[Crossref]

Poumirol, J.-M.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref]

Qiu, X.

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Razzari, L.

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

Reichel, K. S.

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Shalaby, M.

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105, 151108 (2014).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

Shuvaev, A.

A. Shuvaev, G. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106, 107404 (2011).
[Crossref]

Šibalic, N.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Silva, S.

S. Lin, S. Silva, J. Zhou, and D. Talbayev, “A one-way mirror: high-performance terahertz optical isolator based on magnetoplasmonics,” Adv. Opt. Mater. 6, 1800572 (2018).
[Crossref]

Skorobogatiy, M.

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

Slipchenko, T. M.

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

Son, J.

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Suess, R. J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Sushkov, A. B.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Talbayev, D.

S. Lin, S. Silva, J. Zhou, and D. Talbayev, “A one-way mirror: high-performance terahertz optical isolator based on magnetoplasmonics,” Adv. Opt. Mater. 6, 1800572 (2018).
[Crossref]

Tamagnone, M.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref]

Tang, J.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Teng, J.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Teng, J. H.

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Tripathi, V.

Tsai, D. P.

B. H. Cheng, H. W. Chen, K. J. Chang, Y.-C. Lan, and D. P. Tsai, “Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution,” Sci. Rep. 5, 18172 (2015).
[Crossref]

Wade, C. G.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Wang, Q.

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

Wang, Q. J.

Wang, X.

Wang, X.-H.

J.-P. Yu, S. Chen, F. Fan, J.-R. Cheng, S.-T. Xu, X.-H. Wang, and S.-J. Chang, “Tunable terahertz wave-plate based on dual-frequency liquid crystal controlled by alternating electric field,” Opt. Express 26, 663–673 (2018).
[Crossref]

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S.-J. Chang, B. Liu, X.-H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103, 161115 (2013).
[Crossref]

F. Fan, S.-J. Chang, W.-H. Gu, X.-H. Wang, and A.-Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24, 2080–2083 (2012).
[Crossref]

Weatherill, K. J.

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Wei, M.

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

Wu, P.

Wu, Q. Y.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Wu, Y.

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Xu, Q.

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

Xu, S.-T.

Xu, Y.

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

Yan, J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Yang, H.

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

Yang, S.-H.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5, 223–229 (2015).
[Crossref]

Yardimci, N. T.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5, 223–229 (2015).
[Crossref]

Yoon, S. F.

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

Yu, J.-P.

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Zhang, H.

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23, 1015–1024 (2015).
[Crossref]

Zhang, K.

K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2008), pp. 475–576.

Zhang, X.

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

Zhang, Y.

Zhou, J.

S. Lin, S. Silva, J. Zhou, and D. Talbayev, “A one-way mirror: high-performance terahertz optical isolator based on magnetoplasmonics,” Adv. Opt. Mater. 6, 1800572 (2018).
[Crossref]

Zimpel, M.

M. Oszwałldowski and M. Zimpel, “Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb,” J. Phys. Chem. Solids 49, 1179–1185 (1988).
[Crossref]

Adv. Mater. (2)

Y. Wu, C. La-O-Vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. Chia, and H. Yang, “Graphene terahertz modulators by ionic liquid gating,” Adv. Mater. 27, 1874–1879 (2015).
[Crossref]

S. Hanham, A. Fernández-Domínguez, J. H. Teng, S. Ang, K. Lim, S. F. Yoon, C. Ngo, N. Klein, J. Pendry, and S. A. Maier, “Broadband terahertz plasmonic response of touching InSb disks,” Adv. Mater. 24, OP226–OP230 (2012).
[Crossref]

Adv. Opt. Mater. (3)

L. Deng, J. Teng, H. Liu, Q. Y. Wu, J. Tang, X. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, and S. F. Yoon, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings,” Adv. Opt. Mater. 1, 128–132 (2013).
[Crossref]

S. Lin, S. Silva, J. Zhou, and D. Talbayev, “A one-way mirror: high-performance terahertz optical isolator based on magnetoplasmonics,” Adv. Opt. Mater. 6, 1800572 (2018).
[Crossref]

Q. Wang, X. Zhang, E. Plum, Q. Xu, M. Wei, Y. Xu, H. Zhang, Y. Liao, J. Gu, and J. Han, “Polarization and frequency multiplexed terahertz meta-holography,” Adv. Opt. Mater. 5, 1700277 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. Shalaby, M. Peccianti, Y. Ozturk, M. Clerici, I. Al-Naib, L. Razzari, T. Ozaki, A. Mazhorova, M. Skorobogatiy, and R. Morandotti, “Terahertz Faraday rotation in a magnetic liquid: high magneto-optical figure of merit and broadband operation in a ferrofluid,” Appl. Phys. Lett. 100, 241107 (2012).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, I. Al-Naib, C. P. Hauri, and R. Morandotti, “Terahertz magnetic modulator based on magnetically clustered nanoparticles,” Appl. Phys. Lett. 105, 151108 (2014).
[Crossref]

F. Fan, S. Chen, W. Lin, Y.-P. Miao, S.-J. Chang, B. Liu, X.-H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103, 161115 (2013).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant Faraday rotation in graphene metasurfaces,” Appl. Phys. Lett. 101, 231605 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Fan, S.-J. Chang, W.-H. Gu, X.-H. Wang, and A.-Q. Chen, “Magnetically tunable terahertz isolator based on structured semiconductor magneto plasmonics,” IEEE Photon. Technol. Lett. 24, 2080–2083 (2012).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. Terahertz Sci. Technol. 5, 223–229 (2015).
[Crossref]

IEEE Trans. Wireless Commun. (1)

V. Petrov, M. Komarov, D. Moltchanov, J. M. Jornet, and Y. Koucheryavy, “Interference and SINR in millimeter wave and terahertz communication systems with blocking and directional antennas,” IEEE Trans. Wireless Commun. 16, 1791–1808 (2017).
[Crossref]

J. Phys. Chem. Solids (1)

M. Oszwałldowski and M. Zimpel, “Temperature dependence of intrinsic carrier concentration and density of states effective mass of heavy holes in InSb,” J. Phys. Chem. Solids 49, 1179–1185 (1988).
[Crossref]

Nat. Commun. (3)

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref]

J.-M. Poumirol, P. Q. Liu, T. M. Slipchenko, A. Y. Nikitin, L. Martin-Moreno, J. Faist, and A. B. Kuzmenko, “Electrically controlled terahertz magneto-optical phenomena in continuous and patterned graphene,” Nat. Commun. 8, 14626 (2017).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4, 1558 (2013).
[Crossref]

Nat. Nanotechnol. (1)

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, and D. K. Gaskill, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

C. G. Wade, N. Šibalić, N. R. de Melo, J. M. Kondo, C. S. Adams, and K. J. Weatherill, “Real-time near-field terahertz imaging with atomic optical fluorescence,” Nat. Photonics 11, 40–43 (2017).
[Crossref]

Nat. Phys. (1)

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. Shuvaev, G. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106, 107404 (2011).
[Crossref]

Sci. Rep. (3)

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref]

B. H. Cheng, H. W. Chen, K. J. Chang, Y.-C. Lan, and D. P. Tsai, “Magnetically controlled planar hyperbolic metamaterials for subwavelength resolution,” Sci. Rep. 5, 18172 (2015).
[Crossref]

J. Chochol, K. Postava, M. Čada, and J. Pištora, “Experimental demonstration of magnetoplasmon polariton at InSb (InAs)/dielectric interface for terahertz sensor application,” Sci. Rep. 7, 13117 (2017).
[Crossref]

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304–1307 (2013).
[Crossref]

Other (1)

K. Zhang and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2008), pp. 475–576.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Simulative carrier density of InSb at different temperatures; maps of the real part of (b)  ε L and (c)  ε R of longitudinally magnetized InSb in the THz regime under different magnetic fields from 0 T to 0.2 T; maps of theoretical transmittance (d)  I L and (e)  I R of longitudinally magnetized InSb in the THz regime under different magnetic fields from 0 T to 0.2 T; (f) map of the theoretical transmittance difference between the LCP and the RCP ( I L I R ).
Fig. 2.
Fig. 2. (a) Schematic diagram of experimental THz-MOS system; (b) photo of the experimental equipment.
Fig. 3.
Fig. 3. Experimental and simulated results of InSb with different temperatures: (a) measured THz time domain pulses; (b) experimental intensity transmission expressed in dB; (c) simulated carrier density N and cutting frequency f c ; (d) simulated transmission.
Fig. 4.
Fig. 4. Experimental results of InSb under magnetic field: (a) schematic diagram of the experimental configuration; (b) experimental time domain pulses in two orthogonal directions under magnetic fields of 150 mT and 0 mT; (c) experimental transmission of LCP and RCP components; (d) experimental Faraday rotation angles under different magnetic fields.
Fig. 5.
Fig. 5. Polarization state vectors of the transmitted THz wave through InSb when the input wave is an LP light: polarization state at (a) 0.7 THz and (b) 1.1 THz under different magnetic fields; polarization state under (c) 0.13 T and (d) 0.17 T at different frequencies.
Fig. 6.
Fig. 6. (a) 3D schematic diagram of the InSb plasmonics in the experimental configuration; microscope image of grating 1 and grating 2; (b) side view of InSb plasmonics.
Fig. 7.
Fig. 7. Experimental results of the InSb plasmonics: (a) measured y -LP THz pulses under different magnetic fields; (b) THz pulses under forward and backward magnetic fields of 150 mT; (c) amplitude transmission spectra under different magnetic fields; (d) spectra of the extinction ratio.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε ω p 2 / ( ω 2 + i γ ω ) + ε ph , ε ph ( ω ) = ε ( ω t 2 ω l 2 ) / ( ω t 2 ω 2 i γ ph ω ) ,
N ( cm 3 ) = 2.9 × 10 11 ( 2400 T ) 3 / 4 ( 1 + 2.7 × 10 4    T ) T 3 / 2 × exp [ ( 0.129 1.5 × 10 4    T ) / ( k b T ) ] + N 0 ,
β 2 [ E x E y E z ] + [ 0 0 β 2 E z ] + ω 2 μ 0 ε 0 [ ε 1 i ε 2 0 i ε 2 ε 1 0 0 0 ε 3 ] [ E x E y E z ] = 0 ,
ε 1 = ε ω p 2 ( ω + γ i ) ω [ ( ω + γ i ) 2 ω c 2 ] + ε ph , ε 2 = ω p 2 ω c ω [ ( ω + γ i ) 2 ω c 2 ] .
T RCP = | 1 2 ( T L 45 ° e i φ L 45 ° + i T R 45 ° e i φ R 45 ° ) | , T LCP = | 1 2 ( T L 45 ° e i φ L 45 ° i T R 45 ° e i φ R 45 ° ) | .
tan 2 θ = sin 2 β sin Δ φ ,
E x 2 T L 45 ° 2 + E y 2 T R 45 ° 2 2 E x E y T L 45 ° T R 45 ° cos ( Δ φ ) = sin 2 ( Δ φ ) .

Metrics