Abstract

Optical chirp chain Brillouin optical time-domain analysis (OCC-BOTDA) has the capabilities of fast measurement, high Brillouin threshold, and freedom from the nonlocal effect; at the same time, however, it also has problems introduced by transient stimulated Brillouin scattering. The influence of the transient interaction is reflected as the broadened asymmetric Brillouin spectrum, the ghost peak, and the frequency shift of the main peak. This introduces difficulty in computing the fiber Brillouin frequency shift with good measurement accuracy. Besides, the OCC modulation causes additional noise due to the uneven amplitude response for different frequency components. In this work, we propose a high-performance OCC-BOTDA using the principal component analysis (PCA) based pattern recognition algorithm and differential pulse-width pair (DPP) technique. After building the Brillouin spectrum database (i.e., all patterns), the fiber intrinsic Brillouin frequency shift can be recognized by the PCA algorithm from a nonstandard Brillouin spectrum profile, resulting in good measurement accuracy. Meanwhile, the DPP technique, subtracting between two Brillouin signals generated by two wide-width pump pulses, is utilized to reduce the OCC modulation noise and avoid the pulse self-phase modulation effect in long-range BOTDA sensing. In the experiment, a temperature measurement with 1.3 MHz measurement precision, 4 m spatial resolution, and 5 s measurement time is achieved over a 100 km single-mode fiber.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Differential pulse-width pair BOTDA for high spatial resolution sensing

Wenhai Li, Xiaoyi Bao, Yun Li, and Liang Chen
Opt. Express 16(26) 21616-21625 (2008)

Temperature extraction in Brillouin optical time-domain analysis sensors using principal component analysis based pattern recognition

Abul Kalam Azad, Faisal Nadeem Khan, Waled Hussein Alarashi, Nan Guo, Alan Pak Tao Lau, and Chao Lu
Opt. Express 25(14) 16534-16549 (2017)

Phasorial differential pulse-width pair technique for long-range Brillouin optical time-domain analysis sensors

Javier Urricelqui, Mikel Sagues, and Alayn Loayssa
Opt. Express 22(14) 17403-17408 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
    [Crossref]
  2. A. Dominguez-Lopez, M. A. Soto, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor,” Opt. Lett. 42, 1903–1906 (2017).
    [Crossref]
  3. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34, 2613–2615 (2009).
    [Crossref]
  4. D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
    [Crossref]
  5. Y. Peled, A. Motil, and M. Yur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20, 8584–8591 (2012).
    [Crossref]
  6. Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
    [Crossref]
  7. D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agile modulation,” IEEE Photon. J. 9, 7102908 (2017).
    [Crossref]
  8. D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25, 1889–1902 (2017).
    [Crossref]
  9. G. Yang, X. Fan, and Z. He, “Strain dynamic range enlargement of slope-assisted BOTDA by using Brillouin phase-gain ratio,” J. Lightwave Technol. 35, 4451–4458 (2017).
    [Crossref]
  10. Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light: Sci. Appl. 5, e16184 (2016).
    [Crossref]
  11. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19, 4444–4457 (2011).
    [Crossref]
  12. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36, 232–234 (2011).
    [Crossref]
  13. M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
    [Crossref]
  14. J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23, 30448–30458 (2015).
    [Crossref]
  15. J. J. Mompó, J. Urricelqui, and A. Loayssa, “Brillouin optical time-domain analysis sensor with pump pulse amplification,” Opt. Express 24, 12672–12681 (2016).
    [Crossref]
  16. A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24, 10188–10204 (2016).
    [Crossref]
  17. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol 13, 1296–1302 (1995).
    [Crossref]
  18. C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
    [Crossref]
  19. D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
    [Crossref]
  20. Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
    [Crossref]
  21. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  22. R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71, 4653–4658 (1992).
    [Crossref]
  23. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21, 31347–31366 (2013).
    [Crossref]
  24. A. K. Azad, F. N. Khan, and W. H. Alarashi, “Temperature extraction in Brillouin optical time-domain analysis sensors using principal component analysis based pattern recognition,” Opt. Express 25, 16534–16549 (2017).
    [Crossref]
  25. R. Ruiz-Lombera, A. Fuentes, L. Rodriguez-Cobo, J. M. Lopez-Higuera, and J. Mirapeix, “Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks,” J. Lightwave. Technol. 36, 2114–2121 (2018).
    [Crossref]
  26. M. Niklès, L. Thévenaz, and Ph. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [Crossref]

2018 (3)

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
[Crossref]

Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
[Crossref]

R. Ruiz-Lombera, A. Fuentes, L. Rodriguez-Cobo, J. M. Lopez-Higuera, and J. Mirapeix, “Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks,” J. Lightwave. Technol. 36, 2114–2121 (2018).
[Crossref]

2017 (5)

2016 (5)

2015 (2)

J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23, 30448–30458 (2015).
[Crossref]

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

2013 (2)

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21, 31347–31366 (2013).
[Crossref]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

2012 (1)

2011 (2)

2009 (1)

2008 (1)

1997 (1)

M. Niklès, L. Thévenaz, and Ph. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol 13, 1296–1302 (1995).
[Crossref]

1992 (1)

R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71, 4653–4658 (1992).
[Crossref]

Alarashi, W. H.

Angulo-Vinuesa, X.

Azad, A. K.

Ba, D.

Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
[Crossref]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agile modulation,” IEEE Photon. J. 9, 7102908 (2017).
[Crossref]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25, 1889–1902 (2017).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
[Crossref]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

Bao, X.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
[Crossref]

Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
[Crossref]

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
[Crossref]

Bernini, R.

Bolognini, G.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Chen, L.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
[Crossref]

Chu, R.

R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71, 4653–4658 (1992).
[Crossref]

Di Pasquale, F.

Dominguez-Lopez, A.

Dong, Y.

Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
[Crossref]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agile modulation,” IEEE Photon. J. 9, 7102908 (2017).
[Crossref]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25, 1889–1902 (2017).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
[Crossref]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

Falk, J.

R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71, 4653–4658 (1992).
[Crossref]

Fan, X.

Fan, Z.

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agile modulation,” IEEE Photon. J. 9, 7102908 (2017).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
[Crossref]

Fuentes, A.

R. Ruiz-Lombera, A. Fuentes, L. Rodriguez-Cobo, J. M. Lopez-Higuera, and J. Mirapeix, “Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks,” J. Lightwave. Technol. 36, 2114–2121 (2018).
[Crossref]

Fukuda, H.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light: Sci. Appl. 5, e16184 (2016).
[Crossref]

Ghandehari, M.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

Gonzalez-Herraez, M.

González-Herráez, M.

Habel, W.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light: Sci. Appl. 5, e16184 (2016).
[Crossref]

He, Z.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol 13, 1296–1302 (1995).
[Crossref]

Imai, M.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

Inaudi, D.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

Jiang, T.

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25, 1889–1902 (2017).
[Crossref]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

Kanefsky, M.

R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71, 4653–4658 (1992).
[Crossref]

Khan, F. N.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol 13, 1296–1302 (1995).
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol 13, 1296–1302 (1995).
[Crossref]

Leung, C. K. Y.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

Li, H.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agile modulation,” IEEE Photon. J. 9, 7102908 (2017).
[Crossref]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25, 1889–1902 (2017).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
[Crossref]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

Li, W.

Li, Y.

Loayssa, A.

Lopez-Higuera, J. M.

R. Ruiz-Lombera, A. Fuentes, L. Rodriguez-Cobo, J. M. Lopez-Higuera, and J. Mirapeix, “Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks,” J. Lightwave. Technol. 36, 2114–2121 (2018).
[Crossref]

Lu, Z.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agile modulation,” IEEE Photon. J. 9, 7102908 (2017).
[Crossref]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25, 1889–1902 (2017).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
[Crossref]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

Martin-Lopez, S.

Martín-López, S.

Minardo, A.

Mirapeix, J.

R. Ruiz-Lombera, A. Fuentes, L. Rodriguez-Cobo, J. M. Lopez-Higuera, and J. Mirapeix, “Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks,” J. Lightwave. Technol. 36, 2114–2121 (2018).
[Crossref]

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light: Sci. Appl. 5, e16184 (2016).
[Crossref]

Mompó, J. J.

Motil, A.

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light: Sci. Appl. 5, e16184 (2016).
[Crossref]

Niklès, M.

M. Niklès, L. Thévenaz, and Ph. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

Ou, J.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

Pang, C.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
[Crossref]

Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
[Crossref]

Peled, Y.

Ramírez, J. A.

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref]

Robert, Ph.

M. Niklès, L. Thévenaz, and Ph. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

Rodriguez-Cobo, L.

R. Ruiz-Lombera, A. Fuentes, L. Rodriguez-Cobo, J. M. Lopez-Higuera, and J. Mirapeix, “Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks,” J. Lightwave. Technol. 36, 2114–2121 (2018).
[Crossref]

Ruiz-Lombera, R.

R. Ruiz-Lombera, A. Fuentes, L. Rodriguez-Cobo, J. M. Lopez-Higuera, and J. Mirapeix, “Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks,” J. Lightwave. Technol. 36, 2114–2121 (2018).
[Crossref]

Sagues, M.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol 13, 1296–1302 (1995).
[Crossref]

Song, K. Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light: Sci. Appl. 5, e16184 (2016).
[Crossref]

Soto, M. A.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol 13, 1296–1302 (1995).
[Crossref]

Thevenaz, L.

Thévenaz, L.

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24, 10188–10204 (2016).
[Crossref]

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21, 31347–31366 (2013).
[Crossref]

M. Niklès, L. Thévenaz, and Ph. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

Urricelqui, J.

Wan, K. T.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

Wang, B.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
[Crossref]

Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
[Crossref]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25, 1889–1902 (2017).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agile modulation,” IEEE Photon. J. 9, 7102908 (2017).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
[Crossref]

Wu, H. C.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

Xu, P.

Yang, G.

Yang, Z.

Yin, M.

Yur, M.

Zeni, L.

Zhang, H.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
[Crossref]

Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
[Crossref]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25, 1889–1902 (2017).
[Crossref]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

Zhou, D.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
[Crossref]

Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
[Crossref]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25, 1889–1902 (2017).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agile modulation,” IEEE Photon. J. 9, 7102908 (2017).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
[Crossref]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

Zhou, Z.

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

Zhu, C.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

IEEE Photon. J. (2)

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation,” IEEE Photon. J. 5, 2600407 (2013).
[Crossref]

D. Ba, D. Zhou, B. Wang, Z. Lu, Z. Fan, Y. Dong, and H. Li, “Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agile modulation,” IEEE Photon. J. 9, 7102908 (2017).
[Crossref]

J. Appl. Phys. (1)

R. Chu, M. Kanefsky, and J. Falk, “Numerical study of transient stimulated Brillouin scattering,” J. Appl. Phys. 71, 4653–4658 (1992).
[Crossref]

J. Lightwave Technol (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol 13, 1296–1302 (1995).
[Crossref]

J. Lightwave Technol. (2)

G. Yang, X. Fan, and Z. He, “Strain dynamic range enlargement of slope-assisted BOTDA by using Brillouin phase-gain ratio,” J. Lightwave Technol. 35, 4451–4458 (2017).
[Crossref]

M. Niklès, L. Thévenaz, and Ph. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[Crossref]

J. Lightwave. Technol. (1)

R. Ruiz-Lombera, A. Fuentes, L. Rodriguez-Cobo, J. M. Lopez-Higuera, and J. Mirapeix, “Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks,” J. Lightwave. Technol. 36, 2114–2121 (2018).
[Crossref]

Light: Sci. Appl. (2)

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement,” Light: Sci. Appl. 7, 32 (2018).
[Crossref]

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light: Sci. Appl. 5, e16184 (2016).
[Crossref]

Mater. Struct. (1)

C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2015).
[Crossref]

Nat. Commun. (1)

M. A. Soto, J. A. Ramírez, and L. Thévenaz, “Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration,” Nat. Commun. 7, 10870 (2016).
[Crossref]

Opt. Express (10)

J. Urricelqui, M. Sagues, and A. Loayssa, “Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses,” Opt. Express 23, 30448–30458 (2015).
[Crossref]

J. J. Mompó, J. Urricelqui, and A. Loayssa, “Brillouin optical time-domain analysis sensor with pump pulse amplification,” Opt. Express 24, 12672–12681 (2016).
[Crossref]

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martín-López, L. Thévenaz, and M. González-Herráez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24, 10188–10204 (2016).
[Crossref]

D. Zhou, Y. Dong, B. Wang, T. Jiang, D. Ba, P. Xu, H. Zhang, Z. Lu, and H. Li, “Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements,” Opt. Express 25, 1889–1902 (2017).
[Crossref]

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Optimization of long-range BOTDA sensors with high resolution using first-order bi-directional Raman amplification,” Opt. Express 19, 4444–4457 (2011).
[Crossref]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
[Crossref]

Y. Peled, A. Motil, and M. Yur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20, 8584–8591 (2012).
[Crossref]

M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21, 31347–31366 (2013).
[Crossref]

A. K. Azad, F. N. Khan, and W. H. Alarashi, “Temperature extraction in Brillouin optical time-domain analysis sensors using principal component analysis based pattern recognition,” Opt. Express 25, 16534–16549 (2017).
[Crossref]

Opt. Lett. (4)

Other (1)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Time-frequency relationship of the OCC probe wave.
Fig. 2.
Fig. 2. (a) BLSs obtained from a 70 ns pulse (purple short dash–dot) and a 40 ns pulse (pink dashed line), resulting in the differential BLS (black line). (b) Simulated differential BLS (black line), measured differential BLS (red dots), and intrinsic BLS (blue dashed line) based on the DPP technique.
Fig. 3.
Fig. 3. Operation principle of how to employ the PCA algorithm to compute the fiber intrinsic BFS from the measured Brillouin signal in the OCC-BOTDA scheme.
Fig. 4.
Fig. 4. Experiment setup scheme of fast long-range BOTDA based on the OCC technique and Brillouin loss scheme. MG, microwave generator.
Fig. 5.
Fig. 5. (a) Brillouin time traces of the 70 ns (black curve) and 40 ns (red curve) pump pulses. (b) Brillouin time trace of the differential signal (blue curve). (c) BLSs obtained from (a) and (b). (d) The 40 and 70 ns pump pulses at the input end and the output end of the FUT.
Fig. 6.
Fig. 6. Measured BLS and the fitting result based on the PCA and QLS fitting methods: (a) PCA fitting result and (b) QLS fitting result at 1 km, (c) PCA fitting result and (d) QLS fitting result at 60 km, (e) PCA fitting result and (f) QLS fitting result at 100 km in the oven.
Fig. 7.
Fig. 7. 100 km sensing fiber BFS results of two algorithms: black curve is the QLS fitting result; red curve is the PCA fitting result.
Fig. 8.
Fig. 8. Temperature measurement in the last 268 m of the sensing fiber and the top view of the sensing fiber 3D Brillouin loss spectra (inset).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E s ( z , t ) | z = L = P s A eff · cos ( 2 π v t + φ ) ,
v = v 1 + Δ v T · t ( Δ v = v N v 1 , 0 t T ) .

Metrics