Abstract

Ultrashort pulsed Bessel beams with intrinsic nondiffractive character and potential strong excitation confinement down to 100 nm can show a series of advantages over Gaussian beams in fabricating efficient Bragg grating waveguides (BGWs). In this work, we focus on parameter management for the inscription of efficient BGWs using the point-by-point method employing Bessel beams. Due to their high aspect ratio, the resulting one-dimensional void-like structures can section the waveguides and interact efficiently with the optical modes. Effective first-order BGWs with low birefringence can then be fabricated in bulk fused silica. By controlling the size and the relative location of grating voids via the Bessel pulse energy and scan velocities, the resonant behaviors of BGWs can be well regulated. A high value of 34 dB for 8 mm length is achieved. A simple predictive model for BGWs is proposed for analyzing the influences of processing parameters on the performance of BGWs. The technique permits multiplexing several gratings in the same waveguide. Up to eight grating traces were straightforwardly inscribed into the waveguide in a parallel-serial combined mode, forming the multiplex BGWs. As an application, the multiplex BGW sensor with two resonant peaks is proposed and fabricated for improving the reliability of temperature detection.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Type II high-strength Bragg grating waveguides photowritten with ultrashort laser pulses

Haibin Zhang, Shane M. Eaton, Jianzhao Li, Amir H. Nejadmalayeri, and Peter R. Herman
Opt. Express 15(7) 4182-4191 (2007)

Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams

G. Zhang, G. Cheng, M. Bhuyan, C. D’Amico, and R. Stoian
Opt. Lett. 43(9) 2161-2164 (2018)

Temperature-compensated fiber-optic 3D shape sensor based on femtosecond laser direct-written Bragg grating waveguides

Kenneth K.C. Lee, Adrian Mariampillai, Moez Haque, Beau A. Standish, Victor X.D. Yang, and Peter R. Herman
Opt. Express 21(20) 24076-24086 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
    [Crossref]
  2. J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6, 709–723 (2012).
    [Crossref]
  3. I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photon. Rev. 8, L1–L5 (2014).
    [Crossref]
  4. J. Burgmeier, W. Schippers, N. Emde, P. Funken, and W. Schade, “Femtosecond laser-inscribed fiber Bragg gratings for strain monitoring in power cables of offshore wind turbines,” Appl. Opt. 50, 1868–1872 (2011).
    [Crossref]
  5. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007).
    [Crossref]
  6. F. Shen, K. Zhou, L. Zhang, and X. Shu, “Switchable dual-wavelength erbium-doped fibre laser utilizing two-channel fibre Bragg grating fabricated by femtosecond laser,” Laser Phys. 26, 105103 (2016).
    [Crossref]
  7. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass,” Opt. Lett. 31, 3495–3497 (2006).
    [Crossref]
  8. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22, 1480–1489 (2014).
    [Crossref]
  9. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178 (2005).
    [Crossref]
  10. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18, 19844–19859 (2010).
    [Crossref]
  11. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
    [Crossref]
  12. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
    [Crossref]
  13. R. J. Williams, R. G. Kraemer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21, 26854–26867 (2013).
    [Crossref]
  14. E. Ertorer, M. Haque, J. Li, and P. R. Herman, “Femtosecond laser filaments for rapid and flexible writing of fiber Bragg grating,” Opt. Express 26, 9323–9331 (2018).
    [Crossref]
  15. R. Stoian, M. K. Bhuyan, G. Zhang, G. Cheng, R. Meyer, and F. Courvoisier, “Ultrafast Bessel beams: advanced tools for laser materials processing,” Adv. Opt. Technol. 7, 165–174 (2018).
    [Crossref]
  16. R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36, 2988–2990 (2011).
    [Crossref]
  17. J. Burgmeier, C. Waltermann, G. Flachenecker, and W. Schade, “Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses,” Opt. Lett. 39, 540–543 (2014).
    [Crossref]
  18. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
    [Crossref]
  19. M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses,” Nanophotonics 6, 743–763 (2017).
    [Crossref]
  20. M. Thiel, G. Flachenecker, and W. Schade, “Femtosecond laser writing of Bragg grating waveguide bundles in bulk glass,” Opt. Lett. 40, 1266–1269 (2015).
    [Crossref]
  21. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7, 83–108 (2013).
    [Crossref]
  22. G. Zhang, G. Cheng, M. Bhuyan, C. D’Amico, and R. Stoian, “Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams,” Opt. Lett. 43, 2161–2164 (2018).
    [Crossref]
  23. M. K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J. P. Colombier, and R. Stoian, “Ultrafast laser nanostructuring in bulk silica, a slow microexplosion,” Optica 4, 951–958 (2017).
    [Crossref]
  24. M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 219–377 (2014).
    [Crossref]
  25. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55–57 (2003).
    [Crossref]
  26. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [Crossref]
  27. T. Markus, F. Günter, and S. Wolfgang, “Femtosecond laser writing of Bragg grating waveguide bundles in bulk glass,” Opt. Lett. 40, 1266–1269 (2015).
    [Crossref]
  28. H. Zhang and P. R. Herman, “Chirped Bragg grating waveguides directly written inside fused silica glass with an externally modulated ultrashort fiber laser,” IEEE Photon. Technol. Lett. 21, 277–279 (2009).
    [Crossref]
  29. J. Nemanja, T. Jens, R. J. Williams, M. J. Steel, G. D. Marshall, F. Alexander, N. Stefan, T. Andreas, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17, 6082–6095 (2009).
    [Crossref]
  30. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982).
    [Crossref]
  31. M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
    [Crossref]
  32. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [Crossref]
  33. R. E. Schenker and W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
    [Crossref]
  34. K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49, 531–535 (1966).
    [Crossref]
  35. Z. M. Liu, L. Yang, Z. W. Fang, C. Wei, and Y. Cheng, “Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses,” Sci. China 61, 87–90 (2018).
    [Crossref]
  36. M. Royon, E. Marin, S. Girard, A. Boukenter, Y. Ouerdane, and R. Stoian, “X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica,” Opt. Mater. Express 9, 65–74 (2019).
    [Crossref]
  37. M. Royon, D. Piétroy, E. Marin, and A. Saulot, “A thermomechanical sensor using photo-inscribed volume Bragg gratings,” Tribol. Int. 115, 417–423 (2017).
    [Crossref]

2019 (1)

2018 (5)

M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
[Crossref]

G. Zhang, G. Cheng, M. Bhuyan, C. D’Amico, and R. Stoian, “Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams,” Opt. Lett. 43, 2161–2164 (2018).
[Crossref]

E. Ertorer, M. Haque, J. Li, and P. R. Herman, “Femtosecond laser filaments for rapid and flexible writing of fiber Bragg grating,” Opt. Express 26, 9323–9331 (2018).
[Crossref]

R. Stoian, M. K. Bhuyan, G. Zhang, G. Cheng, R. Meyer, and F. Courvoisier, “Ultrafast Bessel beams: advanced tools for laser materials processing,” Adv. Opt. Technol. 7, 165–174 (2018).
[Crossref]

Z. M. Liu, L. Yang, Z. W. Fang, C. Wei, and Y. Cheng, “Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses,” Sci. China 61, 87–90 (2018).
[Crossref]

2017 (3)

M. K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J. P. Colombier, and R. Stoian, “Ultrafast laser nanostructuring in bulk silica, a slow microexplosion,” Optica 4, 951–958 (2017).
[Crossref]

M. Royon, D. Piétroy, E. Marin, and A. Saulot, “A thermomechanical sensor using photo-inscribed volume Bragg gratings,” Tribol. Int. 115, 417–423 (2017).
[Crossref]

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses,” Nanophotonics 6, 743–763 (2017).
[Crossref]

2016 (1)

F. Shen, K. Zhou, L. Zhang, and X. Shu, “Switchable dual-wavelength erbium-doped fibre laser utilizing two-channel fibre Bragg grating fabricated by femtosecond laser,” Laser Phys. 26, 105103 (2016).
[Crossref]

2015 (2)

2014 (4)

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 219–377 (2014).
[Crossref]

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22, 1480–1489 (2014).
[Crossref]

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photon. Rev. 8, L1–L5 (2014).
[Crossref]

J. Burgmeier, C. Waltermann, G. Flachenecker, and W. Schade, “Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses,” Opt. Lett. 39, 540–543 (2014).
[Crossref]

2013 (2)

2012 (1)

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6, 709–723 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (2)

H. Zhang and P. R. Herman, “Chirped Bragg grating waveguides directly written inside fused silica glass with an externally modulated ultrashort fiber laser,” IEEE Photon. Technol. Lett. 21, 277–279 (2009).
[Crossref]

J. Nemanja, T. Jens, R. J. Williams, M. J. Steel, G. D. Marshall, F. Alexander, N. Stefan, T. Andreas, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17, 6082–6095 (2009).
[Crossref]

2007 (1)

2006 (3)

H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass,” Opt. Lett. 31, 3495–3497 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
[Crossref]

2005 (1)

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178 (2005).
[Crossref]

2004 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[Crossref]

2003 (1)

1997 (3)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

R. E. Schenker and W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[Crossref]

1996 (1)

1982 (1)

1966 (1)

K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49, 531–535 (1966).
[Crossref]

Albert, J.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7, 83–108 (2013).
[Crossref]

Alexander, F.

Ams, M.

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses,” Nanophotonics 6, 743–763 (2017).
[Crossref]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
[Crossref]

Andreas, T.

Becker, R. G.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6, 709–723 (2012).
[Crossref]

Bennion, I.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178 (2005).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[Crossref]

Bhuyan, M.

Bhuyan, M. K.

R. Stoian, M. K. Bhuyan, G. Zhang, G. Cheng, R. Meyer, and F. Courvoisier, “Ultrafast Bessel beams: advanced tools for laser materials processing,” Adv. Opt. Technol. 7, 165–174 (2018).
[Crossref]

M. K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J. P. Colombier, and R. Stoian, “Ultrafast laser nanostructuring in bulk silica, a slow microexplosion,” Optica 4, 951–958 (2017).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 219–377 (2014).
[Crossref]

Boukenter, A.

Bourquard, F.

Burgmeier, J.

Callan, J. P.

Caucheteur, C.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7, 83–108 (2013).
[Crossref]

Cheng, G.

R. Stoian, M. K. Bhuyan, G. Zhang, G. Cheng, R. Meyer, and F. Courvoisier, “Ultrafast Bessel beams: advanced tools for laser materials processing,” Adv. Opt. Technol. 7, 165–174 (2018).
[Crossref]

G. Zhang, G. Cheng, M. Bhuyan, C. D’Amico, and R. Stoian, “Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams,” Opt. Lett. 43, 2161–2164 (2018).
[Crossref]

Cheng, Y.

Z. M. Liu, L. Yang, Z. W. Fang, C. Wei, and Y. Cheng, “Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses,” Sci. China 61, 87–90 (2018).
[Crossref]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55–57 (2003).
[Crossref]

Colombier, J. P.

M. K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J. P. Colombier, and R. Stoian, “Ultrafast laser nanostructuring in bulk silica, a slow microexplosion,” Optica 4, 951–958 (2017).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 219–377 (2014).
[Crossref]

Couairon, A.

M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
[Crossref]

Courvoisier, F.

M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
[Crossref]

R. Stoian, M. K. Bhuyan, G. Zhang, G. Cheng, R. Meyer, and F. Courvoisier, “Ultrafast Bessel beams: advanced tools for laser materials processing,” Adv. Opt. Technol. 7, 165–174 (2018).
[Crossref]

D’Amico, C.

Dekker, P.

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses,” Nanophotonics 6, 743–763 (2017).
[Crossref]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[Crossref]

Eaton, S. M.

Emde, N.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

Ertorer, E.

Fang, Z. W.

Z. M. Liu, L. Yang, Z. W. Fang, C. Wei, and Y. Cheng, “Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses,” Sci. China 61, 87–90 (2018).
[Crossref]

Faure, N.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 219–377 (2014).
[Crossref]

Finlay, R. J.

Flachenecker, G.

Fuerbach, A.

Funken, P.

Gamaly, E. G.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Girard, S.

Glezer, E. N.

Gross, S.

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses,” Nanophotonics 6, 743–763 (2017).
[Crossref]

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photon. Rev. 8, L1–L5 (2014).
[Crossref]

Günter, F.

Hallo, L.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Haque, M.

Her, T. H.

Herman, P. R.

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Huang, L.

Ireland, M. J.

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photon. Rev. 8, L1–L5 (2014).
[Crossref]

Itina, T. E.

M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
[Crossref]

Jackson, S. D.

Jedrkiewicz, O.

M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
[Crossref]

Jens, T.

Jovanovic, N.

Jukna, V.

M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
[Crossref]

Juodkazis, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Kawachi, M.

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[Crossref]

Khrushchev, I. Y.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178 (2005).
[Crossref]

Kraemer, R. G.

Lamperti, M.

M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
[Crossref]

Lawrence, J. S.

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photon. Rev. 8, L1–L5 (2014).
[Crossref]

Li, J.

Liu, J. M.

Liu, Z. M.

Z. M. Liu, L. Yang, Z. W. Fang, C. Wei, and Y. Cheng, “Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses,” Sci. China 61, 87–90 (2018).
[Crossref]

Luther-Davies, B.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Marin, E.

Markus, T.

Marshall, G. D.

Martinez, A.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178 (2005).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[Crossref]

Masuda, M.

Mazur, E.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Mermillod-Blondin, A.

Meyer, R.

R. Stoian, M. K. Bhuyan, G. Zhang, G. Cheng, R. Meyer, and F. Courvoisier, “Ultrafast Bessel beams: advanced tools for laser materials processing,” Adv. Opt. Technol. 7, 165–174 (2018).
[Crossref]

Midorikawa, K.

Milosavljevic, M.

Misawa, H.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Monro, T. M.

Nemanja, J.

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Nolte, S.

Oldham, W. G.

R. E. Schenker and W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[Crossref]

Olivier, T.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 219–377 (2014).
[Crossref]

Ouerdane, Y.

Piétroy, D.

M. Royon, D. Piétroy, E. Marin, and A. Saulot, “A thermomechanical sensor using photo-inscribed volume Bragg gratings,” Tribol. Int. 115, 417–423 (2017).
[Crossref]

Richter, D.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6, 709–723 (2012).
[Crossref]

Roy, R.

K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49, 531–535 (1966).
[Crossref]

Royon, M.

Saulot, A.

M. Royon, D. Piétroy, E. Marin, and A. Saulot, “A thermomechanical sensor using photo-inscribed volume Bragg gratings,” Tribol. Int. 115, 417–423 (2017).
[Crossref]

Schade, W.

Schenker, R. E.

R. E. Schenker and W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[Crossref]

Schippers, W.

Schmidt, E. D. D.

K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49, 531–535 (1966).
[Crossref]

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7, 83–108 (2013).
[Crossref]

Shen, F.

F. Shen, K. Zhou, L. Zhang, and X. Shu, “Switchable dual-wavelength erbium-doped fibre laser utilizing two-channel fibre Bragg grating fabricated by femtosecond laser,” Laser Phys. 26, 105103 (2016).
[Crossref]

Shihoyama, K.

Shu, X.

F. Shen, K. Zhou, L. Zhang, and X. Shu, “Switchable dual-wavelength erbium-doped fibre laser utilizing two-channel fibre Bragg grating fabricated by femtosecond laser,” Laser Phys. 26, 105103 (2016).
[Crossref]

Somayaji, M.

Spaleniak, I.

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photon. Rev. 8, L1–L5 (2014).
[Crossref]

Steel, M. J.

Stefan, N.

Stoian, R.

M. Royon, E. Marin, S. Girard, A. Boukenter, Y. Ouerdane, and R. Stoian, “X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica,” Opt. Mater. Express 9, 65–74 (2019).
[Crossref]

G. Zhang, G. Cheng, M. Bhuyan, C. D’Amico, and R. Stoian, “Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams,” Opt. Lett. 43, 2161–2164 (2018).
[Crossref]

R. Stoian, M. K. Bhuyan, G. Zhang, G. Cheng, R. Meyer, and F. Courvoisier, “Ultrafast Bessel beams: advanced tools for laser materials processing,” Adv. Opt. Technol. 7, 165–174 (2018).
[Crossref]

M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
[Crossref]

M. K. Bhuyan, M. Somayaji, A. Mermillod-Blondin, F. Bourquard, J. P. Colombier, and R. Stoian, “Ultrafast laser nanostructuring in bulk silica, a slow microexplosion,” Optica 4, 951–958 (2017).
[Crossref]

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 219–377 (2014).
[Crossref]

Sugioka, K.

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Thiel, M.

Thomas, J.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6, 709–723 (2012).
[Crossref]

Tikhonchuk, V. T.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Toyoda, K.

Trapani, P. D.

M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
[Crossref]

Tünnermann, A.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6, 709–723 (2012).
[Crossref]

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36, 2988–2990 (2011).
[Crossref]

Vedam, K.

K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49, 531–535 (1966).
[Crossref]

Velpula, P. K.

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 219–377 (2014).
[Crossref]

Voigtländer, C.

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6, 709–723 (2012).
[Crossref]

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36, 2988–2990 (2011).
[Crossref]

Waltermann, C.

Warren-Smith, S. C.

Wei, C.

Z. M. Liu, L. Yang, Z. W. Fang, C. Wei, and Y. Cheng, “Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses,” Sci. China 61, 87–90 (2018).
[Crossref]

Williams, R. J.

Withford, M. J.

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses,” Nanophotonics 6, 743–763 (2017).
[Crossref]

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photon. Rev. 8, L1–L5 (2014).
[Crossref]

R. J. Williams, R. G. Kraemer, S. Nolte, M. J. Withford, and M. J. Steel, “Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology,” Opt. Express 21, 26854–26867 (2013).
[Crossref]

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36, 2988–2990 (2011).
[Crossref]

G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express 18, 19844–19859 (2010).
[Crossref]

J. Nemanja, T. Jens, R. J. Williams, M. J. Steel, G. D. Marshall, F. Alexander, N. Stefan, T. Andreas, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17, 6082–6095 (2009).
[Crossref]

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007).
[Crossref]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
[Crossref]

Wolfgang, S.

Xie, C.

M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
[Crossref]

Yang, L.

Z. M. Liu, L. Yang, Z. W. Fang, C. Wei, and Y. Cheng, “Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses,” Sci. China 61, 87–90 (2018).
[Crossref]

Zhang, G.

R. Stoian, M. K. Bhuyan, G. Zhang, G. Cheng, R. Meyer, and F. Courvoisier, “Ultrafast Bessel beams: advanced tools for laser materials processing,” Adv. Opt. Technol. 7, 165–174 (2018).
[Crossref]

G. Zhang, G. Cheng, M. Bhuyan, C. D’Amico, and R. Stoian, “Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams,” Opt. Lett. 43, 2161–2164 (2018).
[Crossref]

Zhang, H.

H. Zhang and P. R. Herman, “Chirped Bragg grating waveguides directly written inside fused silica glass with an externally modulated ultrashort fiber laser,” IEEE Photon. Technol. Lett. 21, 277–279 (2009).
[Crossref]

H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass,” Opt. Lett. 31, 3495–3497 (2006).
[Crossref]

Zhang, L.

F. Shen, K. Zhou, L. Zhang, and X. Shu, “Switchable dual-wavelength erbium-doped fibre laser utilizing two-channel fibre Bragg grating fabricated by femtosecond laser,” Laser Phys. 26, 105103 (2016).
[Crossref]

Zhou, K.

F. Shen, K. Zhou, L. Zhang, and X. Shu, “Switchable dual-wavelength erbium-doped fibre laser utilizing two-channel fibre Bragg grating fabricated by femtosecond laser,” Laser Phys. 26, 105103 (2016).
[Crossref]

Adv. Opt. Technol. (1)

R. Stoian, M. K. Bhuyan, G. Zhang, G. Cheng, R. Meyer, and F. Courvoisier, “Ultrafast Bessel beams: advanced tools for laser materials processing,” Adv. Opt. Technol. 7, 165–174 (2018).
[Crossref]

APL Photon. (1)

M. Lamperti, V. Jukna, O. Jedrkiewicz, P. D. Trapani, R. Stoian, T. E. Itina, C. Xie, F. Courvoisier, and A. Couairon, “Invited article: filamentary deposition of laser energy in glasses with Bessel beams,” APL Photon. 3, 120805 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. K. Bhuyan, P. K. Velpula, J. P. Colombier, T. Olivier, N. Faure, and R. Stoian, “Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams,” Appl. Phys. Lett. 104, 219–377 (2014).
[Crossref]

Electron. Lett. (2)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40, 1170–1172 (2004).
[Crossref]

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser,” Electron. Lett. 41, 176–178 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Zhang and P. R. Herman, “Chirped Bragg grating waveguides directly written inside fused silica glass with an externally modulated ultrashort fiber laser,” IEEE Photon. Technol. Lett. 21, 277–279 (2009).
[Crossref]

J. Am. Ceram. Soc. (1)

K. Vedam, E. D. D. Schmidt, and R. Roy, “Nonlinear variation of refractive index of vitreous silica with pressure to 7 kbars,” J. Am. Ceram. Soc. 49, 531–535 (1966).
[Crossref]

J. Appl. Phys. (1)

R. E. Schenker and W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[Crossref]

J. Lightwave Technol. (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[Crossref]

Laser Photon. Rev. (3)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photon. Rev. 7, 83–108 (2013).
[Crossref]

J. Thomas, C. Voigtländer, R. G. Becker, D. Richter, A. Tünnermann, and S. Nolte, “Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology,” Laser Photon. Rev. 6, 709–723 (2012).
[Crossref]

I. Spaleniak, S. Gross, N. Jovanovic, R. J. Williams, J. S. Lawrence, M. J. Ireland, and M. J. Withford, “Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings,” Laser Photon. Rev. 8, L1–L5 (2014).
[Crossref]

Laser Phys. (1)

F. Shen, K. Zhou, L. Zhang, and X. Shu, “Switchable dual-wavelength erbium-doped fibre laser utilizing two-channel fibre Bragg grating fabricated by femtosecond laser,” Laser Phys. 26, 105103 (2016).
[Crossref]

Nanophotonics (1)

M. Ams, P. Dekker, S. Gross, and M. J. Withford, “Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses,” Nanophotonics 6, 743–763 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (11)

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
[Crossref]

N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating,” Opt. Lett. 32, 1486–1488 (2007).
[Crossref]

H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass,” Opt. Lett. 31, 3495–3497 (2006).
[Crossref]

R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36, 2988–2990 (2011).
[Crossref]

J. Burgmeier, C. Waltermann, G. Flachenecker, and W. Schade, “Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses,” Opt. Lett. 39, 540–543 (2014).
[Crossref]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
[Crossref]

J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982).
[Crossref]

M. Thiel, G. Flachenecker, and W. Schade, “Femtosecond laser writing of Bragg grating waveguide bundles in bulk glass,” Opt. Lett. 40, 1266–1269 (2015).
[Crossref]

G. Zhang, G. Cheng, M. Bhuyan, C. D’Amico, and R. Stoian, “Efficient point-by-point Bragg gratings fabricated in embedded laser-written silica waveguides using ultrafast Bessel beams,” Opt. Lett. 43, 2161–2164 (2018).
[Crossref]

T. Markus, F. Günter, and S. Wolfgang, “Femtosecond laser writing of Bragg grating waveguide bundles in bulk glass,” Opt. Lett. 40, 1266–1269 (2015).
[Crossref]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28, 55–57 (2003).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. Lett. (1)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref]

Sci. China (1)

Z. M. Liu, L. Yang, Z. W. Fang, C. Wei, and Y. Cheng, “Suppression of bend loss in writing of three-dimensional optical waveguides with femtosecond laser pulses,” Sci. China 61, 87–90 (2018).
[Crossref]

Tribol. Int. (1)

M. Royon, D. Piétroy, E. Marin, and A. Saulot, “A thermomechanical sensor using photo-inscribed volume Bragg gratings,” Tribol. Int. 115, 417–423 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic fabrication setup for BGWs: the waveguide is first photoinscribed by using femtosecond Gaussian pulses in a slit shaping method, then the picosecond Bessel pulses are generated by using an insertable 4f system with an axicon element to induce grating voids inside the waveguide along the x-axis direction.
Fig. 2.
Fig. 2. (a) Resonant spectral transmission of first-order BGWs inscribed with different Bessel pulse energies. (b) Resonant spectral transmission of first order BGWs inscribed with pulse energy of 1.6 μJ upon injection with two orthogonal linear polarizations. The insets show the energy flux profiles for the parallel-polarized (left) and perpendicular-polarized (right) modes.
Fig. 3.
Fig. 3. (a) Longitudinal section of the grating void (2.8 μJ) after material removal by FIB. (b) Cross sections of the post-polished grating voids induced by picosecond Bessel beam with different pulse energies. (c) Dependence of the voids’ diameters and surrounding condensed region on pulse energies.
Fig. 4.
Fig. 4. (a) Measured resonant spectra of BGWs with grating segment length of 8 mm. The picosecond Bessel pulses used for inducing grating voids range from 1.5 to 5.0 μJ. (b) Measured and modelled effective refractive index change of BGWs fabricated with different Bessel pulse energies. The inset is the enlarged version. (c) Measured and modelled coupling strength of BGWs fabricated with different Bessel pulse energies. (d) Measured and modelled bandwidth of resonance peak of BGWs fabricated with different Bessel pulse energies.
Fig. 5.
Fig. 5. Bessel voids were inserted into the waveguide with different offsets relative to the center of the waveguide’s cross section. The pulse energy of the picosecond Bessel beam for inducing grating void was fixed at 2.2 μJ. (a) Diagram of the offset BGWs. (b) PCM top images of the spatially displaced BGWs. (c) Resonance spectra of third-order BGWs with different offset values. (d) Dependence of coupling strength on the offset value.
Fig. 6.
Fig. 6. BGW with multiple resonance peaks inscribed with Bessel laser pulses. Case in which eight third- and fourth-order gratings with different resonance peaks were inserted into the same waveguide in a parallel-serial-combined method. Both the lengths of Part 1 and Part 2 are 9 mm.
Fig. 7.
Fig. 7. (a) Schematic experimental setup for thermal characterization of the two-resonance-peaks BGW sensors. (b) Schematic diagram and PCM images of the two-resonance-peaks BGW. (c) Responses of resonance peaks to temperature. (d) Linear relationship between the shift of the resonance peak and temperature.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

δn(x,y)={δn¯mv(x,y)|xx0|dvo/2,|yy0|lvo/20|xx0|dvo/2,|yy0|lvo/2,
δn¯mv(x,y)=dvoΛP(nvonco),
F=2E/(πr0w0),
Fth=Fexp(2nrth2r02),
dvo2=2r02nln(EEth).
kt=πλ|δneff|,
δneff=modδn(x,y)et(x,y)·et*(x,y)dxdy.
δneff=8πa2modδn(x,y)exp[8(x2+y2)a2]dxdy.
δneff=22πdvoπaerf(lvo2a)exp(8x02a2)[dvoΛ(1nco)]=W(x0)dvo2Λ(1nco).
Δλ=λB22πneffkt2+(πL)2,
dvo=dco11/δ.
δneff=W(x0)dvo2Λ(1nco+β),

Metrics