Abstract

Refractive index (RI) sensing helps to identify biomolecules and chemicals in the mid-infrared range for drug discovery, bioengineering, and environmental monitoring. In this paper, we numerically demonstrate an electrically tunable RI sensor with ultrahigh sensitivity using a three-layer graphene nanoribbon array separated by hexagonal boron nitride (hBN). Unlike the weak resonance in single-layer graphene nanoribbons, a much stronger plasmon resonance featuring a higher-quality factor can be excited in the graphene/hBN few-layer ribbon array. Simultaneously, the high purity of graphene on hBN results in an outstanding charge mobility above 4×104  cm2·V1·s1 at 300 K, which allows a larger modulation depth. The interaction between the locally enhanced field around graphene ribbons and its surrounding analyte leads to ultrahigh sensitivity (4.207 μm/RIU), with the figure of merit reaching approximately 58. Moreover, this ultrasensitive detector could selectively work in different wavebands by controlling gate voltages applied to graphene. These merits of ultrahigh sensitivity and electrical tunability are major advances compared to previous RI sensors, paving a way toward ultrasensitive detection using graphene/hBN few-layer devices.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial

Hodjat Hajian, Amir Ghobadi, Bayram Butun, and Ekmel Ozbay
Opt. Express 26(13) 16940-16954 (2018)

Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure

Pei-ren Tang, Jiang Li, Liang-hui Du, Qiao Liu, Qi-xian Peng, Jian-heng Zhao, Bing Zhu, Ze-ren Li, and Li-guo Zhu
Opt. Express 26(23) 30655-30666 (2018)

Tunable multi-wavelength absorption in mid-IR region based on a hybrid patterned graphene-hBN structure

Guangsheng Deng, Xianglian Song, Sina Abedini Dereshgi, Haiqing Xu, and Koray Aydin
Opt. Express 27(16) 23576-23584 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682–12688 (2015).
    [Crossref]
  2. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007), p. 171.
  3. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
    [Crossref]
  4. C. Kang and S. M. Weiss, “Photonic crystal with multiple-hole defect for sensor applications,” Opt. Express 16, 18188–18193 (2008).
    [Crossref]
  5. L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B Chem. 143, 76–86 (2009).
    [Crossref]
  6. A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17, 21191–21204 (2009).
    [Crossref]
  7. Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
    [Crossref]
  8. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
    [Crossref]
  9. M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
    [Crossref]
  10. M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, and K. Staliunas, “Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing,” Sens. Actuators B Chem. 245, 765–773 (2017).
    [Crossref]
  11. X. Wu, Q. Chen, P. Xu, L. Tong, and X. Fan, “Refractive index sensing based on semiconductor nanowire lasers,” Appl. Phys. Lett. 111, 031112 (2017).
    [Crossref]
  12. R. Bernini, G. Persichetti, E. Catalano, L. Zeni, and A. Minardo, “Refractive index sensing by Brillouin scattering in side-polished optical fibers,” Opt. Lett. 43, 2280–2283 (2018).
    [Crossref]
  13. C. H. Chen, T. C. Tsao, J. L. Tang, and W. Te Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
    [Crossref]
  14. S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator : a review,” IEEE Sens. J. 15, 646–650 (2015).
    [Crossref]
  15. L. Kassa-Baghdouche and E. Cassan, “Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides,” Photon. Nanostr. Fundam. Appl. 28, 32–36 (2018).
    [Crossref]
  16. X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “A broadband optical modulator based on a graphene hybrid plasmonic waveguide,” J. Lightwave Technol. 34, 4948–4953 (2016).
    [Crossref]
  17. P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102, 163701 (2013).
    [Crossref]
  18. P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100, 233705 (2012).
    [Crossref]
  19. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
    [Crossref]
  20. M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17, 333–339 (2017).
    [Crossref]
  21. T. Cao, L. Zhang, Z. P. Xiao, and H. Huang, “Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime,” J. Phys. D 46, 395103 (2013).
    [Crossref]
  22. C. Wei, L. Zhang, and T. Cao, “Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime,” Opt. Express 21, 1259–1263 (2014).
    [Crossref]
  23. S. J. M. Rao, M. Islam, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Single split gap resonator based terahertz metamaterials for refractive index sensing,” Proc. SPIE 10531, 105311K (2018).
  24. J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays,” Opt. Laser Technol. 59, 99–103 (2014).
    [Crossref]
  25. F. Fan, S. Chen, X.-H. Wang, P. Wu, and S.-J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photon. Technol. Lett. 27, 478–481 (2015).
    [Crossref]
  26. M. D. Susman, A. Vaskevich, and I. Rubinstein, “Refractive index sensing using visible electromagnetic resonances of supported Cu2O particles,” ACS Appl. Mater. Interfaces 9, 8177–8186 (2017).
    [Crossref]
  27. B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures,” ACS Nano 7, 6978–6987 (2013).
    [Crossref]
  28. Y. Q. Kang, A. François, N. Riesen, and T. M. Monro, “Mode-splitting for refractive index sensing in fluorescent whispering gallery mode microspheres with broken symmetry,” Sensors 18, 2987 (2018).
    [Crossref]
  29. P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. M. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
    [Crossref]
  30. T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
    [Crossref]
  31. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
    [Crossref]
  32. T. Cao, Y. Li, X. Zhang, and Y. Zou, “Theoretical study of tunable chirality from graphene integrated achiral metasurfaces,” Photon. Res. 5, 441–449 (2017).
    [Crossref]
  33. T. Cao, C.-W. Wei, L.-B. Mao, and S. Wang, “Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene,” Opt. Express 23, 18620–18629 (2015).
    [Crossref]
  34. C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, and Y. Yi, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18, 4489 (2018).
    [Crossref]
  35. A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
    [Crossref]
  36. T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4, 025103 (2017).
    [Crossref]
  37. M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 1 (2016).
    [Crossref]
  38. Q. Yang, L. Qin, G. Cao, C. Zhang, and X. Li, “Refractive index sensor based on graphene-coated photonic surface-wave resonance,” Opt. Lett. 43, 639–642 (2018).
    [Crossref]
  39. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
    [Crossref]
  40. P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99, 232104 (2011).
    [Crossref]
  41. N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photon. Rev. 9, 650–655 (2015).
    [Crossref]
  42. H.-S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102, 231107 (2013).
    [Crossref]
  43. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–290 (1980).
    [Crossref]
  44. E. D. Palik, Handbook of Optical Constants of Solids, Author and Subject Indices for Vols. I, II, and III (Elsevier, 1998).
  45. L. J. Prokopeva, Z. Kudyshev, and A. V. Kildishev, “Optical dispersion models for graphene: integration-free formulations,” in 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Metamaterials (2016), pp. 178–180.
  46. N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4, 214–223 (2015).
    [Crossref]
  47. L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007).
    [Crossref]
  48. A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system,” Nano Lett. 15, 3172–3180 (2015).
    [Crossref]
  49. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
    [Crossref]
  50. M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110, 263110 (2017).
    [Crossref]
  51. M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transfer 197, 84–94 (2017).
    [Crossref]
  52. Y. Cai, L. Zhang, Q. Zeng, L. Cheng, and Y. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141, 262–266 (2007).
    [Crossref]
  53. G. C. Schatz, L. J. Sherry, R. C. Jin, C. A. Mirkin, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
    [Crossref]
  54. Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
    [Crossref]
  55. K. S. Kölbig, “Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument,” Comput. Phys. Commun. 4, 221–226 (1972).
    [Crossref]
  56. J. A. Leon, M. A. P. da Silva, N. C. Mamani, L. E. Gomez, A. Rahim, and G. M. Gusev, “Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices,” Graphene 3, 25–35 (2014).
    [Crossref]
  57. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, and L. Eaves, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
    [Crossref]
  58. J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, and D. Suh, “Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact,” Curr. Appl. Phys. 15, 1184–1187 (2015).
    [Crossref]

2018 (6)

S. J. M. Rao, M. Islam, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Single split gap resonator based terahertz metamaterials for refractive index sensing,” Proc. SPIE 10531, 105311K (2018).

Y. Q. Kang, A. François, N. Riesen, and T. M. Monro, “Mode-splitting for refractive index sensing in fluorescent whispering gallery mode microspheres with broken symmetry,” Sensors 18, 2987 (2018).
[Crossref]

L. Kassa-Baghdouche and E. Cassan, “Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides,” Photon. Nanostr. Fundam. Appl. 28, 32–36 (2018).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, and Y. Yi, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18, 4489 (2018).
[Crossref]

Q. Yang, L. Qin, G. Cao, C. Zhang, and X. Li, “Refractive index sensor based on graphene-coated photonic surface-wave resonance,” Opt. Lett. 43, 639–642 (2018).
[Crossref]

R. Bernini, G. Persichetti, E. Catalano, L. Zeni, and A. Minardo, “Refractive index sensing by Brillouin scattering in side-polished optical fibers,” Opt. Lett. 43, 2280–2283 (2018).
[Crossref]

2017 (9)

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110, 263110 (2017).
[Crossref]

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transfer 197, 84–94 (2017).
[Crossref]

T. Cao, Y. Li, X. Zhang, and Y. Zou, “Theoretical study of tunable chirality from graphene integrated achiral metasurfaces,” Photon. Res. 5, 441–449 (2017).
[Crossref]

A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
[Crossref]

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4, 025103 (2017).
[Crossref]

M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, and K. Staliunas, “Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing,” Sens. Actuators B Chem. 245, 765–773 (2017).
[Crossref]

X. Wu, Q. Chen, P. Xu, L. Tong, and X. Fan, “Refractive index sensing based on semiconductor nanowire lasers,” Appl. Phys. Lett. 111, 031112 (2017).
[Crossref]

M. D. Susman, A. Vaskevich, and I. Rubinstein, “Refractive index sensing using visible electromagnetic resonances of supported Cu2O particles,” ACS Appl. Mater. Interfaces 9, 8177–8186 (2017).
[Crossref]

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17, 333–339 (2017).
[Crossref]

2016 (3)

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 1 (2016).
[Crossref]

X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “A broadband optical modulator based on a graphene hybrid plasmonic waveguide,” J. Lightwave Technol. 34, 4948–4953 (2016).
[Crossref]

2015 (10)

T. Cao, C.-W. Wei, L.-B. Mao, and S. Wang, “Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene,” Opt. Express 23, 18620–18629 (2015).
[Crossref]

J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, and D. Suh, “Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact,” Curr. Appl. Phys. 15, 1184–1187 (2015).
[Crossref]

F. Fan, S. Chen, X.-H. Wang, P. Wu, and S.-J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photon. Technol. Lett. 27, 478–481 (2015).
[Crossref]

S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator : a review,” IEEE Sens. J. 15, 646–650 (2015).
[Crossref]

N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photon. Rev. 9, 650–655 (2015).
[Crossref]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4, 214–223 (2015).
[Crossref]

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system,” Nano Lett. 15, 3172–3180 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. M. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

2014 (5)

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays,” Opt. Laser Technol. 59, 99–103 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

C. Wei, L. Zhang, and T. Cao, “Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime,” Opt. Express 21, 1259–1263 (2014).
[Crossref]

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref]

J. A. Leon, M. A. P. da Silva, N. C. Mamani, L. E. Gomez, A. Rahim, and G. M. Gusev, “Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices,” Graphene 3, 25–35 (2014).
[Crossref]

2013 (4)

T. Cao, L. Zhang, Z. P. Xiao, and H. Huang, “Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime,” J. Phys. D 46, 395103 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102, 163701 (2013).
[Crossref]

B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures,” ACS Nano 7, 6978–6987 (2013).
[Crossref]

H.-S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102, 231107 (2013).
[Crossref]

2012 (3)

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100, 233705 (2012).
[Crossref]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, and L. Eaves, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref]

2011 (3)

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99, 232104 (2011).
[Crossref]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

2010 (2)

C. H. Chen, T. C. Tsao, J. L. Tang, and W. Te Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[Crossref]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

2009 (3)

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[Crossref]

L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B Chem. 143, 76–86 (2009).
[Crossref]

A. V. Kabashin, S. Patskovsky, and A. N. Grigorenko, “Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing,” Opt. Express 17, 21191–21204 (2009).
[Crossref]

2008 (1)

2007 (2)

Y. Cai, L. Zhang, Q. Zeng, L. Cheng, and Y. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141, 262–266 (2007).
[Crossref]

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007).
[Crossref]

2006 (1)

G. C. Schatz, L. J. Sherry, R. C. Jin, C. A. Mirkin, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[Crossref]

2002 (1)

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–290 (1980).
[Crossref]

1972 (1)

K. S. Kölbig, “Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument,” Comput. Phys. Commun. 4, 221–226 (1972).
[Crossref]

Al-Naib, I.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Andres, M. V.

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17, 333–339 (2017).
[Crossref]

Asgari, S.

A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
[Crossref]

Atwater, H. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

Avouris, P.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system,” Nano Lett. 15, 3172–3180 (2015).
[Crossref]

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref]

Aydin, K.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

Azad, A. K.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref]

Babayigit, C.

M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, and K. Staliunas, “Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing,” Sens. Actuators B Chem. 245, 765–773 (2017).
[Crossref]

Banszerus, L.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110, 263110 (2017).
[Crossref]

Bao, Q.

Belle, B. D.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, and L. Eaves, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref]

Bello-Jimenez, M. A.

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17, 333–339 (2017).
[Crossref]

Bernini, R.

Beschoten, B.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110, 263110 (2017).
[Crossref]

Boltasseva, A.

N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photon. Rev. 9, 650–655 (2015).
[Crossref]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4, 214–223 (2015).
[Crossref]

Bor, E.

M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, and K. Staliunas, “Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing,” Sens. Actuators B Chem. 245, 765–773 (2017).
[Crossref]

Boztug, Ç.

M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, and K. Staliunas, “Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing,” Sens. Actuators B Chem. 245, 765–773 (2017).
[Crossref]

Britnell, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, and L. Eaves, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[Crossref]

Cai, Y.

Y. Cai, L. Zhang, Q. Zeng, L. Cheng, and Y. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141, 262–266 (2007).
[Crossref]

Cao, G.

Cao, H.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays,” Opt. Laser Technol. 59, 99–103 (2014).
[Crossref]

Cao, T.

T. Cao, Y. Li, X. Zhang, and Y. Zou, “Theoretical study of tunable chirality from graphene integrated achiral metasurfaces,” Photon. Res. 5, 441–449 (2017).
[Crossref]

T. Cao, C.-W. Wei, L.-B. Mao, and S. Wang, “Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene,” Opt. Express 23, 18620–18629 (2015).
[Crossref]

C. Wei, L. Zhang, and T. Cao, “Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime,” Opt. Express 21, 1259–1263 (2014).
[Crossref]

T. Cao, L. Zhang, Z. P. Xiao, and H. Huang, “Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime,” J. Phys. D 46, 395103 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102, 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100, 233705 (2012).
[Crossref]

Cao, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Cassan, E.

L. Kassa-Baghdouche and E. Cassan, “Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides,” Photon. Nanostr. Fundam. Appl. 28, 32–36 (2018).
[Crossref]

Catalano, E.

Cen, C.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, and Y. Yi, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18, 4489 (2018).
[Crossref]

Chandran, B. K.

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. M. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

Chang, S.-J.

F. Fan, S. Chen, X.-H. Wang, P. Wu, and S.-J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photon. Technol. Lett. 27, 478–481 (2015).
[Crossref]

Chen, C. H.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. Te Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[Crossref]

Chen, Q.

X. Wu, Q. Chen, P. Xu, L. Tong, and X. Fan, “Refractive index sensing based on semiconductor nanowire lasers,” Appl. Phys. Lett. 111, 031112 (2017).
[Crossref]

Chen, S.

F. Fan, S. Chen, X.-H. Wang, P. Wu, and S.-J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photon. Technol. Lett. 27, 478–481 (2015).
[Crossref]

Chen, X.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, and Y. Yi, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18, 4489 (2018).
[Crossref]

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “A broadband optical modulator based on a graphene hybrid plasmonic waveguide,” J. Lightwave Technol. 34, 4948–4953 (2016).
[Crossref]

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. M. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

Chen, Y.

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 1 (2016).
[Crossref]

Chen, Y. P.

N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photon. Rev. 9, 650–655 (2015).
[Crossref]

Chen, Z.

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

Cheng, L.

Y. Cai, L. Zhang, Q. Zeng, L. Cheng, and Y. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141, 262–266 (2007).
[Crossref]

Chiang, K. S.

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

Chowdhury, D. R.

S. J. M. Rao, M. Islam, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Single split gap resonator based terahertz metamaterials for refractive index sensing,” Proc. SPIE 10531, 105311K (2018).

Chu, H.-S.

H.-S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102, 231107 (2013).
[Crossref]

Chung, D.

J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, and D. Suh, “Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact,” Curr. Appl. Phys. 15, 1184–1187 (2015).
[Crossref]

Chung, T.

N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photon. Rev. 9, 650–655 (2015).
[Crossref]

Cong, L.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

da Silva, M. A. P.

J. A. Leon, M. A. P. da Silva, N. C. Mamani, L. E. Gomez, A. Rahim, and G. M. Gusev, “Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices,” Graphene 3, 25–35 (2014).
[Crossref]

Dash, S. P.

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99, 232104 (2011).
[Crossref]

De Haseth, J. A.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007), p. 171.

Dean, C. R.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

Dolatabady, A.

A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
[Crossref]

Eaves, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, and L. Eaves, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref]

Emani, N. K.

N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photon. Rev. 9, 650–655 (2015).
[Crossref]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4, 214–223 (2015).
[Crossref]

Engels, S.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110, 263110 (2017).
[Crossref]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Falkovsky, L. A.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007).
[Crossref]

Fan, D.

Fan, F.

F. Fan, S. Chen, X.-H. Wang, P. Wu, and S.-J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photon. Technol. Lett. 27, 478–481 (2015).
[Crossref]

Fan, X.

X. Wu, Q. Chen, P. Xu, L. Tong, and X. Fan, “Refractive index sensing based on semiconductor nanowire lasers,” Appl. Phys. Lett. 111, 031112 (2017).
[Crossref]

Fang, N. X.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system,” Nano Lett. 15, 3172–3180 (2015).
[Crossref]

Farmer, D. B.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref]

Fogelström, M.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4, 025103 (2017).
[Crossref]

François, A.

Y. Q. Kang, A. François, N. Riesen, and T. M. Monro, “Mode-splitting for refractive index sensing in fluorescent whispering gallery mode microspheres with broken symmetry,” Sensors 18, 2987 (2018).
[Crossref]

Fung, K. H.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system,” Nano Lett. 15, 3172–3180 (2015).
[Crossref]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures,” ACS Nano 7, 6978–6987 (2013).
[Crossref]

García De Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Giden, I. H.

M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, and K. Staliunas, “Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing,” Sens. Actuators B Chem. 245, 765–773 (2017).
[Crossref]

Gomez, L. E.

J. A. Leon, M. A. P. da Silva, N. C. Mamani, L. E. Gomez, A. Rahim, and G. M. Gusev, “Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices,” Graphene 3, 25–35 (2014).
[Crossref]

Gorbachev, R. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, and L. Eaves, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref]

Granpayeh, N.

A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
[Crossref]

Griffiths, P. R.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007), p. 171.

Grigorenko, A. N.

Guo, Y.

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

Gusev, G. M.

J. A. Leon, M. A. P. da Silva, N. C. Mamani, L. E. Gomez, A. Rahim, and G. M. Gusev, “Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices,” Graphene 3, 25–35 (2014).
[Crossref]

Hayran, Z.

M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, and K. Staliunas, “Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing,” Sens. Actuators B Chem. 245, 765–773 (2017).
[Crossref]

Heinz, T. F.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref]

Hernandez-Arriaga, M. V.

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17, 333–339 (2017).
[Crossref]

Hone, J.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

How Gan, C.

H.-S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102, 231107 (2013).
[Crossref]

Hu, M.

S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator : a review,” IEEE Sens. J. 15, 646–650 (2015).
[Crossref]

Huang, H.

T. Cao, L. Zhang, Z. P. Xiao, and H. Huang, “Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime,” J. Phys. D 46, 395103 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102, 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100, 233705 (2012).
[Crossref]

Huang, J.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, and Y. Yi, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18, 4489 (2018).
[Crossref]

Huang, X.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref]

Islam, M.

S. J. M. Rao, M. Islam, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Single split gap resonator based terahertz metamaterials for refractive index sensing,” Proc. SPIE 10531, 105311K (2018).

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[Crossref]

Jalil, R.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, and L. Eaves, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Jia, W.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays,” Opt. Laser Technol. 59, 99–103 (2014).
[Crossref]

Jiang, G.

Jin, R. C.

G. C. Schatz, L. J. Sherry, R. C. Jin, C. A. Mirkin, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[Crossref]

Kabashin, A.

L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B Chem. 143, 76–86 (2009).
[Crossref]

Kabashin, A. V.

Kang, C.

Kang, H.

J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, and D. Suh, “Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact,” Curr. Appl. Phys. 15, 1184–1187 (2015).
[Crossref]

Kang, Y. Q.

Y. Q. Kang, A. François, N. Riesen, and T. M. Monro, “Mode-splitting for refractive index sensing in fluorescent whispering gallery mode microspheres with broken symmetry,” Sensors 18, 2987 (2018).
[Crossref]

Kassa-Baghdouche, L.

L. Kassa-Baghdouche and E. Cassan, “Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides,” Photon. Nanostr. Fundam. Appl. 28, 32–36 (2018).
[Crossref]

Katsnelson, M. I.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, and L. Eaves, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref]

Kelaita, Y. A.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

Kildishev, A. V.

N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photon. Rev. 9, 650–655 (2015).
[Crossref]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4, 214–223 (2015).
[Crossref]

L. J. Prokopeva, Z. Kudyshev, and A. V. Kildishev, “Optical dispersion models for graphene: integration-free formulations,” in 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Metamaterials (2016), pp. 178–180.

Kim, J.

J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, and D. Suh, “Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact,” Curr. Appl. Phys. 15, 1184–1187 (2015).
[Crossref]

Kim, J.-G.

J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, and D. Suh, “Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact,” Curr. Appl. Phys. 15, 1184–1187 (2015).
[Crossref]

Kim, P.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

Kinaret, J.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4, 025103 (2017).
[Crossref]

Kölbig, K. S.

K. S. Kölbig, “Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument,” Comput. Phys. Commun. 4, 221–226 (1972).
[Crossref]

Kudyshev, Z.

L. J. Prokopeva, Z. Kudyshev, and A. V. Kildishev, “Optical dispersion models for graphene: integration-free formulations,” in 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Metamaterials (2016), pp. 178–180.

Kumar, A.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system,” Nano Lett. 15, 3172–3180 (2015).
[Crossref]

Kumar, G.

S. J. M. Rao, M. Islam, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Single split gap resonator based terahertz metamaterials for refractive index sensing,” Proc. SPIE 10531, 105311K (2018).

Kurt, H.

M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, and K. Staliunas, “Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing,” Sens. Actuators B Chem. 245, 765–773 (2017).
[Crossref]

Lee, B. J.

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transfer 197, 84–94 (2017).
[Crossref]

Lee, C.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

Lee, S. S.

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transfer 197, 84–94 (2017).
[Crossref]

Lee, Y. H.

J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, and D. Suh, “Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact,” Curr. Appl. Phys. 15, 1184–1187 (2015).
[Crossref]

Leon, J. A.

J. A. Leon, M. A. P. da Silva, N. C. Mamani, L. E. Gomez, A. Rahim, and G. M. Gusev, “Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices,” Graphene 3, 25–35 (2014).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–290 (1980).
[Crossref]

Li, S.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays,” Opt. Laser Technol. 59, 99–103 (2014).
[Crossref]

Li, T.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref]

Li, X.

Li, Y.

T. Cao, Y. Li, X. Zhang, and Y. Zou, “Theoretical study of tunable chirality from graphene integrated achiral metasurfaces,” Photon. Res. 5, 441–449 (2017).
[Crossref]

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref]

Liang, C.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, and Y. Yi, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18, 4489 (2018).
[Crossref]

Liang, R.

S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator : a review,” IEEE Sens. J. 15, 646–650 (2015).
[Crossref]

Liang, Z.

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 1 (2016).
[Crossref]

Lim, M.

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transfer 197, 84–94 (2017).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Lin, H.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, and Y. Yi, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18, 4489 (2018).
[Crossref]

Liu, P.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102, 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100, 233705 (2012).
[Crossref]

Liu, X.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102, 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100, 233705 (2012).
[Crossref]

Liu, Y.

Lopez-Estopier, R.

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17, 333–339 (2017).
[Crossref]

Low, T.

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system,” Nano Lett. 15, 3172–3180 (2015).
[Crossref]

Lv, H.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref]

Lv, R.

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[Crossref]

Mamani, N. C.

J. A. Leon, M. A. P. da Silva, N. C. Mamani, L. E. Gomez, A. Rahim, and G. M. Gusev, “Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices,” Graphene 3, 25–35 (2014).
[Crossref]

Mao, L.-B.

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures,” ACS Nano 7, 6978–6987 (2013).
[Crossref]

Meng, X.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref]

Meric, I.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

Minardo, A.

Mirkin, C. A.

G. C. Schatz, L. J. Sherry, R. C. Jin, C. A. Mirkin, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[Crossref]

Monro, T. M.

Y. Q. Kang, A. François, N. Riesen, and T. M. Monro, “Mode-splitting for refractive index sensing in fluorescent whispering gallery mode microspheres with broken symmetry,” Sensors 18, 2987 (2018).
[Crossref]

Ng, M. N.

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

Osgood, R. M.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref]

Pal, B. P.

S. J. M. Rao, M. Islam, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Single split gap resonator based terahertz metamaterials for refractive index sensing,” Proc. SPIE 10531, 105311K (2018).

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, Author and Subject Indices for Vols. I, II, and III (Elsevier, 1998).

Pan, M.

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 1 (2016).
[Crossref]

Park, J.

J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, and D. Suh, “Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact,” Curr. Appl. Phys. 15, 1184–1187 (2015).
[Crossref]

Patskovsky, S.

Pershoguba, S. S.

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007).
[Crossref]

Persichetti, G.

Prokopeva, L. J.

N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photon. Rev. 9, 650–655 (2015).
[Crossref]

L. J. Prokopeva, Z. Kudyshev, and A. V. Kildishev, “Optical dispersion models for graphene: integration-free formulations,” in 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Metamaterials (2016), pp. 178–180.

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Pryce, I. M.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

Qi, Z.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102, 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100, 233705 (2012).
[Crossref]

Qin, L.

Rahim, A.

J. A. Leon, M. A. P. da Silva, N. C. Mamani, L. E. Gomez, A. Rahim, and G. M. Gusev, “Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices,” Graphene 3, 25–35 (2014).
[Crossref]

Rao, S. J. M.

S. J. M. Rao, M. Islam, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Single split gap resonator based terahertz metamaterials for refractive index sensing,” Proc. SPIE 10531, 105311K (2018).

Ren, M.

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100, 233705 (2012).
[Crossref]

Riesen, N.

Y. Q. Kang, A. François, N. Riesen, and T. M. Monro, “Mode-splitting for refractive index sensing in fluorescent whispering gallery mode microspheres with broken symmetry,” Sensors 18, 2987 (2018).
[Crossref]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

Rodriguez-Cobos, A.

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17, 333–339 (2017).
[Crossref]

Rubinstein, I.

M. D. Susman, A. Vaskevich, and I. Rubinstein, “Refractive index sensing using visible electromagnetic resonances of supported Cu2O particles,” ACS Appl. Mater. Interfaces 9, 8177–8186 (2017).
[Crossref]

Schatz, G. C.

G. C. Schatz, L. J. Sherry, R. C. Jin, C. A. Mirkin, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[Crossref]

Schedin, F.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, and L. Eaves, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref]

Schmitz, M.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110, 263110 (2017).
[Crossref]

Shalaev, V. M.

N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photon. Rev. 9, 650–655 (2015).
[Crossref]

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4, 214–223 (2015).
[Crossref]

Shepard, K. L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

Sherry, L. J.

G. C. Schatz, L. J. Sherry, R. C. Jin, C. A. Mirkin, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[Crossref]

Shi, L.

L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B Chem. 143, 76–86 (2009).
[Crossref]

Singh, R.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Skorobogatiy, M.

L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B Chem. 143, 76–86 (2009).
[Crossref]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[Crossref]

Sorgenfrei, S.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

Staliunas, K.

M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, and K. Staliunas, “Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing,” Sens. Actuators B Chem. 245, 765–773 (2017).
[Crossref]

Stampfer, C.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110, 263110 (2017).
[Crossref]

Suh, D.

J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, and D. Suh, “Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact,” Curr. Appl. Phys. 15, 1184–1187 (2015).
[Crossref]

Sun, C.

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. M. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

Sun, X.

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

Sun, X. M.

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. M. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

Susman, M. D.

M. D. Susman, A. Vaskevich, and I. Rubinstein, “Refractive index sensing using visible electromagnetic resonances of supported Cu2O particles,” ACS Appl. Mater. Interfaces 9, 8177–8186 (2017).
[Crossref]

Tang, J. L.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. Te Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[Crossref]

Tang, Z.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102, 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100, 233705 (2012).
[Crossref]

Taniguchi, T.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110, 263110 (2017).
[Crossref]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

Tassin, P.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4, 025103 (2017).
[Crossref]

Te Wu, W.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. Te Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[Crossref]

Tombros, N.

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99, 232104 (2011).
[Crossref]

Tong, L.

X. Wu, Q. Chen, P. Xu, L. Tong, and X. Fan, “Refractive index sensing based on semiconductor nanowire lasers,” Appl. Phys. Lett. 111, 031112 (2017).
[Crossref]

Tsao, T. C.

C. H. Chen, T. C. Tsao, J. L. Tang, and W. Te Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[Crossref]

Turduev, M.

M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, and K. Staliunas, “Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing,” Sens. Actuators B Chem. 245, 765–773 (2017).
[Crossref]

Van Duyne, R. P.

G. C. Schatz, L. J. Sherry, R. C. Jin, C. A. Mirkin, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[Crossref]

Van Wees, B. J.

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99, 232104 (2011).
[Crossref]

Vaskevich, A.

M. D. Susman, A. Vaskevich, and I. Rubinstein, “Refractive index sensing using visible electromagnetic resonances of supported Cu2O particles,” ACS Appl. Mater. Interfaces 9, 8177–8186 (2017).
[Crossref]

Viola, G.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4, 025103 (2017).
[Crossref]

Wan, P.

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. M. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

Wang, D.

N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photon. Rev. 9, 650–655 (2015).
[Crossref]

Wang, F.

S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator : a review,” IEEE Sens. J. 15, 646–650 (2015).
[Crossref]

Wang, L.

X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “A broadband optical modulator based on a graphene hybrid plasmonic waveguide,” J. Lightwave Technol. 34, 4948–4953 (2016).
[Crossref]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

Wang, Q.

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[Crossref]

Wang, S.

Wang, T.

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

Wang, X.-H.

F. Fan, S. Chen, X.-H. Wang, P. Wu, and S.-J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photon. Technol. Lett. 27, 478–481 (2015).
[Crossref]

Wang, Y.

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 1 (2016).
[Crossref]

X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “A broadband optical modulator based on a graphene hybrid plasmonic waveguide,” J. Lightwave Technol. 34, 4948–4953 (2016).
[Crossref]

Watanabe, K.

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110, 263110 (2017).
[Crossref]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

Wei, C.

C. Wei, L. Zhang, and T. Cao, “Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime,” Opt. Express 21, 1259–1263 (2014).
[Crossref]

Wei, C.-W.

Weiss, S. M.

Wen, S.

Wen, X.

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. M. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

Wenger, T.

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4, 025103 (2017).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Wu, H.

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100, 233705 (2012).
[Crossref]

Wu, J.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays,” Opt. Laser Technol. 59, 99–103 (2014).
[Crossref]

Wu, P.

F. Fan, S. Chen, X.-H. Wang, P. Wu, and S.-J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photon. Technol. Lett. 27, 478–481 (2015).
[Crossref]

Wu, X.

X. Wu, Q. Chen, P. Xu, L. Tong, and X. Fan, “Refractive index sensing based on semiconductor nanowire lasers,” Appl. Phys. Lett. 111, 031112 (2017).
[Crossref]

Xiang, Y.

Xiao, L.

S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator : a review,” IEEE Sens. J. 15, 646–650 (2015).
[Crossref]

Xiao, Z. P.

T. Cao, L. Zhang, Z. P. Xiao, and H. Huang, “Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime,” J. Phys. D 46, 395103 (2013).
[Crossref]

Xu, P.

X. Wu, Q. Chen, P. Xu, L. Tong, and X. Fan, “Refractive index sensing based on semiconductor nanowire lasers,” Appl. Phys. Lett. 111, 031112 (2017).
[Crossref]

Xu, Y.

Y. Cai, L. Zhang, Q. Zeng, L. Cheng, and Y. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141, 262–266 (2007).
[Crossref]

Yan, H.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref]

Yang, Q.

Yi, Y.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, and Y. Yi, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18, 4489 (2018).
[Crossref]

Young, A. F.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

Yu, J.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays,” Opt. Laser Technol. 59, 99–103 (2014).
[Crossref]

Yun, Y.

J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, and D. Suh, “Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact,” Curr. Appl. Phys. 15, 1184–1187 (2015).
[Crossref]

Zeng, B.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref]

Zeng, Q.

Y. Cai, L. Zhang, Q. Zeng, L. Cheng, and Y. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141, 262–266 (2007).
[Crossref]

Zeni, L.

Zhang, C.

Zhang, H.

X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, and D. Fan, “A broadband optical modulator based on a graphene hybrid plasmonic waveguide,” J. Lightwave Technol. 34, 4948–4953 (2016).
[Crossref]

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. M. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref]

Zhang, J.

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102, 163701 (2013).
[Crossref]

Zhang, L.

C. Wei, L. Zhang, and T. Cao, “Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime,” Opt. Express 21, 1259–1263 (2014).
[Crossref]

T. Cao, L. Zhang, Z. P. Xiao, and H. Huang, “Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime,” J. Phys. D 46, 395103 (2013).
[Crossref]

Y. Cai, L. Zhang, Q. Zeng, L. Cheng, and Y. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141, 262–266 (2007).
[Crossref]

Zhang, W.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Zhang, X.

Zhang, Y.

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref]

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[Crossref]

Zhao, Y.

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[Crossref]

Zhou, C.

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays,” Opt. Laser Technol. 59, 99–103 (2014).
[Crossref]

Zhu, W.

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref]

Zomer, P. J.

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99, 232104 (2011).
[Crossref]

Zou, S.

S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator : a review,” IEEE Sens. J. 15, 646–650 (2015).
[Crossref]

Zou, Y.

2D Mater. (1)

T. Wenger, G. Viola, J. Kinaret, M. Fogelström, and P. Tassin, “High-sensitivity plasmonic refractive index sensing using graphene,” 2D Mater. 4, 025103 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. D. Susman, A. Vaskevich, and I. Rubinstein, “Refractive index sensing using visible electromagnetic resonances of supported Cu2O particles,” ACS Appl. Mater. Interfaces 9, 8177–8186 (2017).
[Crossref]

ACS Nano (3)

B. Gallinet and O. J. F. Martin, “Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures,” ACS Nano 7, 6978–6987 (2013).
[Crossref]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5, 8167–8174 (2011).
[Crossref]

Appl. Phys. Lett. (7)

X. Wu, Q. Chen, P. Xu, L. Tong, and X. Fan, “Refractive index sensing based on semiconductor nanowire lasers,” Appl. Phys. Lett. 111, 031112 (2017).
[Crossref]

P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, and J. Zhang, “An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity,” Appl. Phys. Lett. 102, 163701 (2013).
[Crossref]

P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, and H. Wu, “An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel,” Appl. Phys. Lett. 100, 233705 (2012).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

H.-S. Chu and C. How Gan, “Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays,” Appl. Phys. Lett. 102, 231107 (2013).
[Crossref]

P. J. Zomer, S. P. Dash, N. Tombros, and B. J. Van Wees, “A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,” Appl. Phys. Lett. 99, 232104 (2011).
[Crossref]

M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, and B. Beschoten, “High mobility dry-transferred CVD bilayer graphene,” Appl. Phys. Lett. 110, 263110 (2017).
[Crossref]

Comput. Phys. Commun. (1)

K. S. Kölbig, “Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument,” Comput. Phys. Commun. 4, 221–226 (1972).
[Crossref]

Curr. Appl. Phys. (1)

J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, and D. Suh, “Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact,” Curr. Appl. Phys. 15, 1184–1187 (2015).
[Crossref]

Graphene (1)

J. A. Leon, M. A. P. da Silva, N. C. Mamani, L. E. Gomez, A. Rahim, and G. M. Gusev, “Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices,” Graphene 3, 25–35 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (2)

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE Photon. Technol. Lett. 14, 361–362 (2002).
[Crossref]

F. Fan, S. Chen, X.-H. Wang, P. Wu, and S.-J. Chang, “Terahertz refractive index sensing based on photonic column array,” IEEE Photon. Technol. Lett. 27, 478–481 (2015).
[Crossref]

IEEE Sens. J. (3)

A. Dolatabady, S. Asgari, and N. Granpayeh, “Tunable mid-infrared nanoscale graphene-based refractive index sensor,” IEEE Sens. J. 18, 569–574 (2017).
[Crossref]

M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, and M. V. Andres, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17, 333–339 (2017).
[Crossref]

S. Zou, F. Wang, R. Liang, L. Xiao, and M. Hu, “A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator : a review,” IEEE Sens. J. 15, 646–650 (2015).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–290 (1980).
[Crossref]

J. Phys. D (1)

T. Cao, L. Zhang, Z. P. Xiao, and H. Huang, “Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime,” J. Phys. D 46, 395103 (2013).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. Lim, S. S. Lee, and B. J. Lee, “Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances,” J. Quant. Spectrosc. Radiat. Transfer 197, 84–94 (2017).
[Crossref]

Laser Photon. Rev. (1)

N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Plasmon resonance in multilayer graphene nanoribbons,” Laser Photon. Rev. 9, 650–655 (2015).
[Crossref]

Nano Lett. (3)

A. Kumar, T. Low, K. H. Fung, P. Avouris, and N. X. Fang, “Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system,” Nano Lett. 15, 3172–3180 (2015).
[Crossref]

G. C. Schatz, L. J. Sherry, R. C. Jin, C. A. Mirkin, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[Crossref]

Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, “Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers,” Nano Lett. 14, 1573–1577 (2014).
[Crossref]

Nanophotonics (1)

N. K. Emani, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Graphene: a dynamic platform for electrical control of plasmonic resonance,” Nanophotonics 4, 214–223 (2015).
[Crossref]

Nanoscale (1)

Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, and A. K. Azad, “A graphene based tunable terahertz sensor with double Fano resonances,” Nanoscale 7, 12682–12688 (2015).
[Crossref]

Nat. Nanotechnol. (1)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5, 722–726 (2010).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, and W. Jia, “Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays,” Opt. Laser Technol. 59, 99–103 (2014).
[Crossref]

Opt. Lasers Eng. (1)

Y. Zhao, R. Lv, Y. Zhang, and Q. Wang, “Novel optical devices based on the transmission properties of magnetic fluid and their characteristics,” Opt. Lasers Eng. 50, 1177–1184 (2012).
[Crossref]

Opt. Lett. (2)

Photon. Nanostr. Fundam. Appl. (1)

L. Kassa-Baghdouche and E. Cassan, “Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides,” Photon. Nanostr. Fundam. Appl. 28, 32–36 (2018).
[Crossref]

Photon. Res. (1)

Phys. Rev. B (2)

L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B 76, 153410 (2007).
[Crossref]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
[Crossref]

Proc. SPIE (1)

S. J. M. Rao, M. Islam, G. Kumar, B. P. Pal, and D. R. Chowdhury, “Single split gap resonator based terahertz metamaterials for refractive index sensing,” Proc. SPIE 10531, 105311K (2018).

Sci. Rep. (1)

M. Pan, Z. Liang, Y. Wang, and Y. Chen, “Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons,” Sci. Rep. 6, 1 (2016).
[Crossref]

Science (2)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, and L. Eaves, “Field-effect tunneling transistor based on vertical graphene heterostructures,” Science 335, 947–950 (2012).
[Crossref]

Sens. Actuators B Chem. (2)

M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, and K. Staliunas, “Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing,” Sens. Actuators B Chem. 245, 765–773 (2017).
[Crossref]

L. Shi, A. Kabashin, and M. Skorobogatiy, “Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies,” Sens. Actuators B Chem. 143, 76–86 (2009).
[Crossref]

Sensors (3)

C. H. Chen, T. C. Tsao, J. L. Tang, and W. Te Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794–4804 (2010).
[Crossref]

Y. Q. Kang, A. François, N. Riesen, and T. M. Monro, “Mode-splitting for refractive index sensing in fluorescent whispering gallery mode microspheres with broken symmetry,” Sensors 18, 2987 (2018).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, and Y. Yi, “A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays,” Sensors 18, 4489 (2018).
[Crossref]

Small (2)

P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. M. Sun, and X. Chen, “Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing,” Small 11, 5409–5415 (2015).
[Crossref]

T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, and X. Sun, “Flexible transparent electronic gas sensors,” Small 12, 3748–3756 (2016).
[Crossref]

Solid State Commun. (1)

Y. Cai, L. Zhang, Q. Zeng, L. Cheng, and Y. Xu, “Infrared reflectance spectrum of BN calculated from first principles,” Solid State Commun. 141, 262–266 (2007).
[Crossref]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids, Author and Subject Indices for Vols. I, II, and III (Elsevier, 1998).

L. J. Prokopeva, Z. Kudyshev, and A. V. Kildishev, “Optical dispersion models for graphene: integration-free formulations,” in 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Metamaterials (2016), pp. 178–180.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (Wiley, 2007), p. 171.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematics of the proposed device. (a) The G3BN2 ribbon array on top of dielectric ribbons is separated from the Au substrate by a dielectric spacer (t1=30  nm and t2=322  nm). (b) The cross-sectional view of the sensor in the xz-plane, with a period p=160  nm and width w=80  nm.
Fig. 2.
Fig. 2. G3BN2 few-layer ribbon array with a higher Q and an MD larger than those of G1BN1 and G2BN1. (a) Reflectance spectra of the G1BN1, G2BN1, and G3BN2 ribbon arrays excited by incident light with the electric field perpendicular to graphene ribbon. (b) Reflectance spectra with different charge scattering times. The color map of the E-field magnitude distribution in the vicinity of (c) G1BN1, (d) G2BN1, and (e) G3BN2 ribbons in the xz-plane at the resonant wavelengths of 10.857, 8.068, and 6.786 μm, respectively.
Fig. 3.
Fig. 3. Sensing process of the proposed sensor. (a) The cross-sectional view of the proposed sensor with the analyte; the thickness of the analyte above graphene is ta. (b) Reflectance spectra of different analytes with different RIs (n=1.501.52).
Fig. 4.
Fig. 4. Dependence of the resonance position on the RIs of analytes. (a) The reflectance spectra of the proposed sensor for 100-nm-thick analytes with different RIs n=1.002.00 (EF=0.25  eV), (b) the resonant spectral position for different RI analytes, (c) sensitivity (m) and FWHM, and (d) FOM and quality factors (Q) as a function of analytes’ RIs.
Fig. 5.
Fig. 5. A precondition for accurate sensing is to keep the analyte thickness above 60 nm. (a) The resonant wavelengths with different thicknesses of analytes from 1 to 200 nm (EF=0.25  eV). (b) Working bands of the reflectance sensor can be selected by controlling graphene’s Fermi energy (n=1.75).
Fig. 6.
Fig. 6. Polarization-dependent reflectance of the G3BN2 sensor (n=1.00).
Fig. 7.
Fig. 7. Dielectric function of CaF2 [43].
Fig. 8.
Fig. 8. Surface conductivity of graphene calculated using the RPA model for room temperature T=300  K, Fermi energies EF=0.25 and 0.3 eV, and relaxation time τ obtained from Eq. (2) in the main text. The pink area indicates the wavelength range of interest (6–11 μm). (a) Real and (b) imaginary parts of total relative conductivity; (c) absolute error between two formulations, Eqs. (C1) and (C2); and (d) intraband and (e) interband responses calculated for EF=0.3  eV.
Fig. 9.
Fig. 9. Components of the hBN dielectric function [48] (a) in-plane and (b) out-of-plane.
Fig. 10.
Fig. 10. Reflectance spectra of (a) G1BN1, (b) G2BN2, and (c) G3BN2 ribbon arrays with different analytes (n=1.00 and n=2.00).

Tables (1)

Tables Icon

Table 1. Comparison with the Published Sensors

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

σ(ω)=σ0{i8πln(2coshEF2ωT)ωTω+iτ1+1+iπ[ψ(12iω2ωF4πωT)ψ(12iω+2ωF4πωT)]}.
τ=μDCEF/evF2,
εr=1+0.5675888λ2λ20.0502636052+0.4710914λ2λ20.10039092+3.8484723λ2λ234.6490402,
σ(ω)=σ0[i8πln(2coshEF2ωT)ωTω+iτ1+H(ω2)+i2ωπ0H(ω2)H(ω2)ω2ω2dω],
σ(ω)=σ0{i8πln(2coshEF2ωT)ωTω+iτ1+1+iπ[ψ(12iω2ωF4πωT)ψ(12iω+2ωF4πωT)]}.
εm=ε,m+ε,mωLO,m2ωTO,m2ωTO,m2ω2iωΓm,

Metrics