Abstract

Localized surface plasmon resonance (LSPR) of nanostructures and the interfacial charge transfer (CT) of semiconductor materials play essential roles in the study of optical and photoelectronic properties. In this paper, a composite substrate of Ag2S quantum dots (QDs) coated plasmonic Au bowtie nanoantenna (BNA) arrays with a metal–insulator–metal (MIM) configuration was built to study the synergistic effect of LSPR and interfacial CT using surface-enhanced Raman scattering (SERS) in the near-infrared (NIR) region. The Au BNA array structure with a large enhancement of the localized electric field (E-field) strongly enhanced the Raman signal of adsorbed p-aminothiophenol (PATP) probe molecules. Meanwhile, the broad enhanced spectral region was achieved owing to the coupling of LSPR. The as-prepared Au BNA array structure facilitated enhancements of the excitation as well as the emission of Raman signal simultaneously, which was established by finite-difference time-domain simulation. Moreover, Ag2S semiconductor QDs were introduced into the BNA/PATP system to further enhance Raman signals, which benefited from the interfacial CT resonance in the BNA/Ag2S-QDs/PATP system. As a result, the Raman signals of PATP in the BNA/Ag2S-QDs/PATP system were strongly enhanced under 785 nm laser excitation due to the synergistic effect of E-field enhancement and interfacial CT. Furthermore, the SERS polarization dependence effects of the BNA/Ag2S-QDs/PATP system were also investigated. The SERS spectra indicated that the polarization dependence of the substrate increased with decreasing polarization angles (θpola) of excitation from p-polarized (θpola=90°) excitation to s-polarized (θpola=0°) excitation. This study provides a strategy using the synergistic effect of interfacial CT and E-field enhancement for SERS applications and provides a guidance for the development of SERS study on semiconductor QD-based plasmonic substrates, and can be further extended to other material-nanostructure systems for various optoelectronic and sensing applications.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Azimuthal vector beam exciting silver triangular nanoprisms for increasing the performance of surface-enhanced Raman spectroscopy

Lu Zhang, Wending Zhang, Fanfan Lu, Zhiqiang Yang, Tianyang Xue, Min Liu, Chao Meng, Peng Li, Dong Mao, Ting Mei, and Jianlin Zhao
Photon. Res. 7(12) 1447-1453 (2019)

Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy

Hailong Wang, Yuyang Wang, Yi Wang, Weiqing Xu, and Shuping Xu
Photon. Res. 5(5) 527-535 (2017)

Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior

Haiying Xu, Caixia Kan, Changzong Miao, Changshun Wang, Jingjing Wei, Yuan Ni, Beibei Lu, and Daning Shi
Photon. Res. 5(1) 27-32 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Shindo, “Raman spectra of acrylonitrile adsorbed on a silver electrode,” Chem. Phys. Lett. 159, 85–89 (1989).
    [Crossref]
  2. A. B. Zrimsek, N. L. Wong, and P. R. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof,” J. Phys. Chem. C 120, 5133–5142 (2016).
    [Crossref]
  3. X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37, 912–920 (2008).
    [Crossref]
  4. C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, and L. H. Wang, “Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows,” J. Mater. Chem. B 7, 2001–2008 (2019).
    [Crossref]
  5. D. Joseph, Y. S. Huh, and Y. K. Han, “A top-down chemical approach to tuning the morphology and plasmon resonance of spiky nanostars for enriched SERS-based chemical sensing,” Sens. Actuators B 288, 120–126 (2019).
    [Crossref]
  6. H. Wen, H. Wang, J. Hai, S. S. He, F. J. Chen, and B. D. Wang, “Photochemical synthesis of porous CuFeSe2/Au heterostructured nanospheres as SERS sensor for ultrasensitive detection of lung cancer cells and their biomarkers,” ACS Sustain. Chem. Eng. 7, 5200–5208 (2019).
    [Crossref]
  7. R. M. Liu, Y. Xiong, W. Y. Tang, Y. Guo, X. H. Yan, and M. Z. Si, “Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) studies on oxyheamoglobin (OxyHb) of liver cancer based on PVA-Ag nanofilm,” J. Raman Spectrosc. 44, 362–369 (2013).
    [Crossref]
  8. Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
    [Crossref]
  9. G. Q. Liu, Y. Liu, L. Tang, X. S. Liu, G. L. Fu, and Z. Q. Liu, “Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures,” Nanophotonics 8, 1095–1107 (2019).
    [Crossref]
  10. S. H. Huang, X. F. Jiang, B. Peng, C. Janisch, A. Cocking, S. K. Özdemir, Z. W. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
    [Crossref]
  11. J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 5605–5617 (2008).
    [Crossref]
  12. Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, “Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite,” ACS Photon. 5, 1619–1627 (2018).
    [Crossref]
  13. L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
    [Crossref]
  14. L. W. Nien, S. C. Lin, B. K. Chao, M. J. Chen, J. H. Li, and C. H. Hsueh, “Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas,” J. Phys. Chem. C 117, 25004–25011 (2013).
    [Crossref]
  15. X. Y. Xuan, S. P. Xu, Y. Liu, H. B. Li, W. Q. Xu, and J. R. Lombardi, “A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced Raman scattering,” J. Phys. Chem. Lett. 3, 2773–2778 (2012).
    [Crossref]
  16. Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4, e296 (2015).
    [Crossref]
  17. M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
    [Crossref]
  18. Z. Y. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25, 3840–3856 (2013).
    [Crossref]
  19. J. H. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. L. Guo, “Plasmonic metasurfaces with 42.3% transmission efficiency in the visible,” Light Sci. Appl. 8, 53 (2019).
    [Crossref]
  20. R. Gillibert, M. Sarkar, J. Moreau, M. Besbes, M. Canva, and D. L. C. M. Lamy, “Near-field enhancement localization on plasmonic gratings,” J. Phys. Chem. C 120, 27562–27570 (2016).
    [Crossref]
  21. D. Etezadi, J. B. Warner, F. S. Ruggeri, G. Dietler, H. A. Lashuel, and H. Altug, “Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection,” Light Sci. Appl. 6, e17029 (2017).
    [Crossref]
  22. Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
    [Crossref]
  23. B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
    [Crossref]
  24. K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
    [Crossref]
  25. H. Q. Zhao, H. T. Gao, T. Cao, and B. Y. Li, “Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna,” Opt. Express 26, A178–A191 (2018).
    [Crossref]
  26. W. Wang, J. Zhang, X. Che, and G. Qin, “Large absorption enhancement in ultrathin solar cells patterned by metallic nanocavity arrays,” Sci. Rep. 6, 34219 (2016).
    [Crossref]
  27. C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, and C. Liu, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15, 1382–1387 (2015).
    [Crossref]
  28. G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
    [Crossref]
  29. B. Wang, S. C. Singh, H. Y. Lu, and C. L. Guo, “Design of aluminum bowtie nanoantenna array with geometrical control to tune LSPR from UV to near-IR for optical sensing,” Plasmonics (2019).
    [Crossref]
  30. Y. Chen, Y. H. Chen, J. R. Chu, and X. F. Xu, “Bridged bowtie aperture antenna for producing an electromagnetic hot spot,” ACS Photon. 4, 567–575 (2017).
    [Crossref]
  31. D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
    [Crossref]
  32. J. Zhang, M. Irannejad, and B. Cui, “Bowtie nanoantenna with single-digit nanometer gap for surface-enhanced Raman scattering (SERS),” Plasmonics 10, 831–837 (2014).
    [Crossref]
  33. L. Li, S. Fang Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101, 113116 (2012).
    [Crossref]
  34. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
    [Crossref]
  35. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30, 3404–3406 (2005).
    [Crossref]
  36. Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19, 14919–14928 (2011).
    [Crossref]
  37. L. H. Lin and Y. B. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
    [Crossref]
  38. Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
    [Crossref]
  39. Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
    [Crossref]
  40. Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
    [Crossref]
  41. Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
    [Crossref]
  42. J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions,” J. Chem. Phys. 84, 4174–4180 (1986).
    [Crossref]
  43. L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, and B. Zhao, “Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles,” New J. Chem. 43, 230–237 (2019).
    [Crossref]
  44. J. Wu, P. Wang, F. Wang, and Y. Fang, “Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced Raman spectroscopy,” Nanomaterials 8, 864 (2018).
    [Crossref]
  45. D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
    [Crossref]
  46. X. Hou, X. Zhang, W. Yang, Y. Liu, and X. Zhai, “Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer,” Mater. Res. Bull. 47, 2579–2583 (2012).
    [Crossref]
  47. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
    [Crossref]
  48. J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95, 141111 (2009).
    [Crossref]
  49. Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6, 3695–3702 (2012).
    [Crossref]
  50. Y. Delgado-Beleño, C. E. Martinez-Nuñez, M. Cortez-Valadez, N. S. Flores-López, and M. Flores-Acosta, “Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications,” Mater. Res. Bull. 99, 385–392 (2018).
    [Crossref]
  51. A. Sahu, L. Qi, M. S. Kang, D. Deng, and D. J. Norris, “Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals,” J. Am. Chem. Soc. 133, 6509–6512 (2011).
    [Crossref]
  52. J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
    [Crossref]
  53. C. Li, F. Li, Y. Zhang, W. Zhang, X. E. Zhang, and Q. Wang, “Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot,” ACS Nano 9, 12255–12263 (2015).
    [Crossref]
  54. C. Lu, G. Chen, B. Yu, and H. Cong, “Recent advances of low biological toxicity Ag2S QDs for biomedical application,” Adv. Eng. Mater. 20, 1700940 (2018).
    [Crossref]
  55. X. Fu, T. Jiang, Q. Zhao, and H. Yin, “Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates,” J. Raman Spectrosc. 43, 1191–1195 (2012).
    [Crossref]
  56. S. Pan, X. Liu, and X. Wang, “Preparation of Ag2S-Graphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity,” Mater. Charact. 62, 1094–1101 (2011).
    [Crossref]
  57. J. Wu, Y. Zhou, W. Nie, and P. Chen, “One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications,” J. Nanopart. Res. 20, 7 (2018).
    [Crossref]
  58. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, 2005).
  59. E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1991).
  60. W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
    [Crossref]
  61. A. Dutta, K. Alam, T. Nuutinen, E. Hulkko, P. Karvinen, M. Kuittinen, J. J. Toppari, and E. M. Vartiainen, “Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers,” Opt. Express 27, 30031–30043 (2019).
    [Crossref]
  62. Z. Sun, C. Wang, J. Yang, B. Zhao, and J. R. Lombardi, “Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 6093–6098 (2008).
    [Crossref]
  63. M. Pang, J. Hu, and H. C. Zeng, “Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers,” J. Am. Chem. Soc. 132, 10771–10785 (2010).
    [Crossref]
  64. J. Yang and J. Y. Ying, “Nanocomposites of Ag2S and noble metals,” Angew. Chem. (Int. Ed.) 50, 4637–4643 (2011).
    [Crossref]
  65. M. Osawa, N. Matsuda, K. Yoshii, and I. Uchida, “Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution,” J. Phys. Chem. 98, 12702–12707 (1994).
    [Crossref]
  66. L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7, 5147–5151 (2015).
    [Crossref]
  67. L. Yang, W. Ruan, X. Jiang, B. Zhao, W. Xu, and J. R. Lombardi, “Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly,” J. Phys. Chem. C 113, 117–120 (2009).
    [Crossref]
  68. X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19, 11212–11219 (2017).
    [Crossref]
  69. C. Chenal, R. L. Birke, and J. R. Lombardi, “Determination of the degree of charge-transfer contributions to surface-enhanced Raman spectroscopy,” Chem. Phys. Chem. 9, 1617–1623 (2008).
    [Crossref]
  70. W. Zhang, L. Zhang, Z. Hui, X. Zhang, and Y. Qian, “Synthesis of nanocrystalline Ag2S in aqueous solution,” Solid State Ionics 130, 111–114 (2000).
    [Crossref]
  71. J. W. Xu, C. W. Wang, Z. Rong, X. A. Cheng, and R. Xiao, “A graphene-interlayered magnetic composite as a multifunctional SERS substrate,” RSC Adv. 5, 62101–62109 (2015).
    [Crossref]

2019 (9)

C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, and L. H. Wang, “Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows,” J. Mater. Chem. B 7, 2001–2008 (2019).
[Crossref]

D. Joseph, Y. S. Huh, and Y. K. Han, “A top-down chemical approach to tuning the morphology and plasmon resonance of spiky nanostars for enriched SERS-based chemical sensing,” Sens. Actuators B 288, 120–126 (2019).
[Crossref]

H. Wen, H. Wang, J. Hai, S. S. He, F. J. Chen, and B. D. Wang, “Photochemical synthesis of porous CuFeSe2/Au heterostructured nanospheres as SERS sensor for ultrasensitive detection of lung cancer cells and their biomarkers,” ACS Sustain. Chem. Eng. 7, 5200–5208 (2019).
[Crossref]

Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
[Crossref]

G. Q. Liu, Y. Liu, L. Tang, X. S. Liu, G. L. Fu, and Z. Q. Liu, “Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures,” Nanophotonics 8, 1095–1107 (2019).
[Crossref]

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

J. H. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. L. Guo, “Plasmonic metasurfaces with 42.3% transmission efficiency in the visible,” Light Sci. Appl. 8, 53 (2019).
[Crossref]

L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, and B. Zhao, “Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles,” New J. Chem. 43, 230–237 (2019).
[Crossref]

A. Dutta, K. Alam, T. Nuutinen, E. Hulkko, P. Karvinen, M. Kuittinen, J. J. Toppari, and E. M. Vartiainen, “Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers,” Opt. Express 27, 30031–30043 (2019).
[Crossref]

2018 (12)

C. Lu, G. Chen, B. Yu, and H. Cong, “Recent advances of low biological toxicity Ag2S QDs for biomedical application,” Adv. Eng. Mater. 20, 1700940 (2018).
[Crossref]

J. Wu, Y. Zhou, W. Nie, and P. Chen, “One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications,” J. Nanopart. Res. 20, 7 (2018).
[Crossref]

J. Wu, P. Wang, F. Wang, and Y. Fang, “Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced Raman spectroscopy,” Nanomaterials 8, 864 (2018).
[Crossref]

D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
[Crossref]

Y. Delgado-Beleño, C. E. Martinez-Nuñez, M. Cortez-Valadez, N. S. Flores-López, and M. Flores-Acosta, “Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications,” Mater. Res. Bull. 99, 385–392 (2018).
[Crossref]

J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
[Crossref]

H. Q. Zhao, H. T. Gao, T. Cao, and B. Y. Li, “Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna,” Opt. Express 26, A178–A191 (2018).
[Crossref]

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, “Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite,” ACS Photon. 5, 1619–1627 (2018).
[Crossref]

S. H. Huang, X. F. Jiang, B. Peng, C. Janisch, A. Cocking, S. K. Özdemir, Z. W. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
[Crossref]

2017 (4)

Y. Chen, Y. H. Chen, J. R. Chu, and X. F. Xu, “Bridged bowtie aperture antenna for producing an electromagnetic hot spot,” ACS Photon. 4, 567–575 (2017).
[Crossref]

D. Etezadi, J. B. Warner, F. S. Ruggeri, G. Dietler, H. A. Lashuel, and H. Altug, “Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection,” Light Sci. Appl. 6, e17029 (2017).
[Crossref]

Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
[Crossref]

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19, 11212–11219 (2017).
[Crossref]

2016 (3)

R. Gillibert, M. Sarkar, J. Moreau, M. Besbes, M. Canva, and D. L. C. M. Lamy, “Near-field enhancement localization on plasmonic gratings,” J. Phys. Chem. C 120, 27562–27570 (2016).
[Crossref]

W. Wang, J. Zhang, X. Che, and G. Qin, “Large absorption enhancement in ultrathin solar cells patterned by metallic nanocavity arrays,” Sci. Rep. 6, 34219 (2016).
[Crossref]

A. B. Zrimsek, N. L. Wong, and P. R. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof,” J. Phys. Chem. C 120, 5133–5142 (2016).
[Crossref]

2015 (7)

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4, e296 (2015).
[Crossref]

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, and C. Liu, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15, 1382–1387 (2015).
[Crossref]

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7, 5147–5151 (2015).
[Crossref]

J. W. Xu, C. W. Wang, Z. Rong, X. A. Cheng, and R. Xiao, “A graphene-interlayered magnetic composite as a multifunctional SERS substrate,” RSC Adv. 5, 62101–62109 (2015).
[Crossref]

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

C. Li, F. Li, Y. Zhang, W. Zhang, X. E. Zhang, and Q. Wang, “Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot,” ACS Nano 9, 12255–12263 (2015).
[Crossref]

L. H. Lin and Y. B. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref]

2014 (2)

Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
[Crossref]

J. Zhang, M. Irannejad, and B. Cui, “Bowtie nanoantenna with single-digit nanometer gap for surface-enhanced Raman scattering (SERS),” Plasmonics 10, 831–837 (2014).
[Crossref]

2013 (4)

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Z. Y. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25, 3840–3856 (2013).
[Crossref]

L. W. Nien, S. C. Lin, B. K. Chao, M. J. Chen, J. H. Li, and C. H. Hsueh, “Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas,” J. Phys. Chem. C 117, 25004–25011 (2013).
[Crossref]

R. M. Liu, Y. Xiong, W. Y. Tang, Y. Guo, X. H. Yan, and M. Z. Si, “Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) studies on oxyheamoglobin (OxyHb) of liver cancer based on PVA-Ag nanofilm,” J. Raman Spectrosc. 44, 362–369 (2013).
[Crossref]

2012 (7)

X. Y. Xuan, S. P. Xu, Y. Liu, H. B. Li, W. Q. Xu, and J. R. Lombardi, “A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced Raman scattering,” J. Phys. Chem. Lett. 3, 2773–2778 (2012).
[Crossref]

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref]

L. Li, S. Fang Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101, 113116 (2012).
[Crossref]

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[Crossref]

X. Hou, X. Zhang, W. Yang, Y. Liu, and X. Zhai, “Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer,” Mater. Res. Bull. 47, 2579–2583 (2012).
[Crossref]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6, 3695–3702 (2012).
[Crossref]

X. Fu, T. Jiang, Q. Zhao, and H. Yin, “Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates,” J. Raman Spectrosc. 43, 1191–1195 (2012).
[Crossref]

2011 (4)

S. Pan, X. Liu, and X. Wang, “Preparation of Ag2S-Graphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity,” Mater. Charact. 62, 1094–1101 (2011).
[Crossref]

J. Yang and J. Y. Ying, “Nanocomposites of Ag2S and noble metals,” Angew. Chem. (Int. Ed.) 50, 4637–4643 (2011).
[Crossref]

A. Sahu, L. Qi, M. S. Kang, D. Deng, and D. J. Norris, “Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals,” J. Am. Chem. Soc. 133, 6509–6512 (2011).
[Crossref]

Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19, 14919–14928 (2011).
[Crossref]

2010 (4)

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
[Crossref]

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[Crossref]

M. Pang, J. Hu, and H. C. Zeng, “Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers,” J. Am. Chem. Soc. 132, 10771–10785 (2010).
[Crossref]

2009 (2)

L. Yang, W. Ruan, X. Jiang, B. Zhao, W. Xu, and J. R. Lombardi, “Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly,” J. Phys. Chem. C 113, 117–120 (2009).
[Crossref]

J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95, 141111 (2009).
[Crossref]

2008 (4)

C. Chenal, R. L. Birke, and J. R. Lombardi, “Determination of the degree of charge-transfer contributions to surface-enhanced Raman spectroscopy,” Chem. Phys. Chem. 9, 1617–1623 (2008).
[Crossref]

Z. Sun, C. Wang, J. Yang, B. Zhao, and J. R. Lombardi, “Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 6093–6098 (2008).
[Crossref]

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37, 912–920 (2008).
[Crossref]

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 5605–5617 (2008).
[Crossref]

2005 (1)

2000 (2)

W. Zhang, L. Zhang, Z. Hui, X. Zhang, and Y. Qian, “Synthesis of nanocrystalline Ag2S in aqueous solution,” Solid State Ionics 130, 111–114 (2000).
[Crossref]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

1994 (1)

M. Osawa, N. Matsuda, K. Yoshii, and I. Uchida, “Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution,” J. Phys. Chem. 98, 12702–12707 (1994).
[Crossref]

1989 (1)

H. Shindo, “Raman spectra of acrylonitrile adsorbed on a silver electrode,” Chem. Phys. Lett. 159, 85–89 (1989).
[Crossref]

1986 (1)

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions,” J. Chem. Phys. 84, 4174–4180 (1986).
[Crossref]

Adam, P. M.

Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
[Crossref]

Alam, K.

Alivisatos, A. P.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

Altug, H.

D. Etezadi, J. B. Warner, F. S. Ruggeri, G. Dietler, H. A. Lashuel, and H. Altug, “Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection,” Light Sci. Appl. 6, e17029 (2017).
[Crossref]

Bachelot, R.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[Crossref]

Badenes, G.

Bai, B.

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4, e296 (2015).
[Crossref]

Banaee, M. G.

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
[Crossref]

Baumberg, J. J.

J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95, 141111 (2009).
[Crossref]

Besbes, M.

R. Gillibert, M. Sarkar, J. Moreau, M. Besbes, M. Canva, and D. L. C. M. Lamy, “Near-field enhancement localization on plasmonic gratings,” J. Phys. Chem. C 120, 27562–27570 (2016).
[Crossref]

Birke, R. L.

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 5605–5617 (2008).
[Crossref]

C. Chenal, R. L. Birke, and J. R. Lombardi, “Determination of the degree of charge-transfer contributions to surface-enhanced Raman spectroscopy,” Chem. Phys. Chem. 9, 1617–1623 (2008).
[Crossref]

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions,” J. Chem. Phys. 84, 4174–4180 (1986).
[Crossref]

Cabrini, S.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Calafiore, G.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Canva, M.

R. Gillibert, M. Sarkar, J. Moreau, M. Besbes, M. Canva, and D. L. C. M. Lamy, “Near-field enhancement localization on plasmonic gratings,” J. Phys. Chem. C 120, 27562–27570 (2016).
[Crossref]

Cao, T.

Cecchini, M. P.

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref]

Cesario, J.

Chao, B. K.

L. W. Nien, S. C. Lin, B. K. Chao, M. J. Chen, J. H. Li, and C. H. Hsueh, “Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas,” J. Phys. Chem. C 117, 25004–25011 (2013).
[Crossref]

Che, X.

W. Wang, J. Zhang, X. Che, and G. Qin, “Large absorption enhancement in ultrathin solar cells patterned by metallic nanocavity arrays,” Sci. Rep. 6, 34219 (2016).
[Crossref]

Chen, F. J.

H. Wen, H. Wang, J. Hai, S. S. He, F. J. Chen, and B. D. Wang, “Photochemical synthesis of porous CuFeSe2/Au heterostructured nanospheres as SERS sensor for ultrasensitive detection of lung cancer cells and their biomarkers,” ACS Sustain. Chem. Eng. 7, 5200–5208 (2019).
[Crossref]

Chen, G.

C. Lu, G. Chen, B. Yu, and H. Cong, “Recent advances of low biological toxicity Ag2S QDs for biomedical application,” Adv. Eng. Mater. 20, 1700940 (2018).
[Crossref]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6, 3695–3702 (2012).
[Crossref]

Chen, J.

D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
[Crossref]

Chen, M. J.

L. W. Nien, S. C. Lin, B. K. Chao, M. J. Chen, J. H. Li, and C. H. Hsueh, “Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas,” J. Phys. Chem. C 117, 25004–25011 (2013).
[Crossref]

Chen, P.

J. Wu, Y. Zhou, W. Nie, and P. Chen, “One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications,” J. Nanopart. Res. 20, 7 (2018).
[Crossref]

Chen, W. Q.

C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, and L. H. Wang, “Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows,” J. Mater. Chem. B 7, 2001–2008 (2019).
[Crossref]

Chen, Y.

Y. Chen, Y. H. Chen, J. R. Chu, and X. F. Xu, “Bridged bowtie aperture antenna for producing an electromagnetic hot spot,” ACS Photon. 4, 567–575 (2017).
[Crossref]

Chen, Y. H.

Y. Chen, Y. H. Chen, J. R. Chu, and X. F. Xu, “Bridged bowtie aperture antenna for producing an electromagnetic hot spot,” ACS Photon. 4, 567–575 (2017).
[Crossref]

Chen, Y. T.

Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
[Crossref]

Chenal, C.

C. Chenal, R. L. Birke, and J. R. Lombardi, “Determination of the degree of charge-transfer contributions to surface-enhanced Raman spectroscopy,” Chem. Phys. Chem. 9, 1617–1623 (2008).
[Crossref]

Cheng, J. L.

Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, “Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite,” ACS Photon. 5, 1619–1627 (2018).
[Crossref]

Cheng, X. A.

J. W. Xu, C. W. Wang, Z. Rong, X. A. Cheng, and R. Xiao, “A graphene-interlayered magnetic composite as a multifunctional SERS substrate,” RSC Adv. 5, 62101–62109 (2015).
[Crossref]

Cheng, Z.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7, 5147–5151 (2015).
[Crossref]

Chu, J. R.

Y. Chen, Y. H. Chen, J. R. Chu, and X. F. Xu, “Bridged bowtie aperture antenna for producing an electromagnetic hot spot,” ACS Photon. 4, 567–575 (2017).
[Crossref]

Chu, Y.

Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19, 14919–14928 (2011).
[Crossref]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
[Crossref]

Cocking, A.

Cong, H.

C. Lu, G. Chen, B. Yu, and H. Cong, “Recent advances of low biological toxicity Ag2S QDs for biomedical application,” Adv. Eng. Mater. 20, 1700940 (2018).
[Crossref]

Cortez-Valadez, M.

Y. Delgado-Beleño, C. E. Martinez-Nuñez, M. Cortez-Valadez, N. S. Flores-López, and M. Flores-Acosta, “Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications,” Mater. Res. Bull. 99, 385–392 (2018).
[Crossref]

Crozier, K. B.

Y. Chu, D. Wang, W. Zhu, and K. B. Crozier, “Double resonance surface enhanced Raman scattering substrates: an intuitive coupled oscillator model,” Opt. Express 19, 14919–14928 (2011).
[Crossref]

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
[Crossref]

Cui, B.

J. Zhang, M. Irannejad, and B. Cui, “Bowtie nanoantenna with single-digit nanometer gap for surface-enhanced Raman scattering (SERS),” Plasmonics 10, 831–837 (2014).
[Crossref]

Cui, S.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[Crossref]

Cuscunà, M.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Dai, H.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6, 3695–3702 (2012).
[Crossref]

Dai, Z. G.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

de Lamaestre, R. E.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[Crossref]

Delgado-Beleño, Y.

Y. Delgado-Beleño, C. E. Martinez-Nuñez, M. Cortez-Valadez, N. S. Flores-López, and M. Flores-Acosta, “Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications,” Mater. Res. Bull. 99, 385–392 (2018).
[Crossref]

Deng, D.

A. Sahu, L. Qi, M. S. Kang, D. Deng, and D. J. Norris, “Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals,” J. Am. Chem. Soc. 133, 6509–6512 (2011).
[Crossref]

Dietler, G.

D. Etezadi, J. B. Warner, F. S. Ruggeri, G. Dietler, H. A. Lashuel, and H. Altug, “Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection,” Light Sci. Appl. 6, e17029 (2017).
[Crossref]

DiMarco, C.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

Ding, W.

Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
[Crossref]

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[Crossref]

Dong, C.

C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, and L. H. Wang, “Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows,” J. Mater. Chem. B 7, 2001–2008 (2019).
[Crossref]

Dutta, A.

Edel, J. B.

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref]

ElKabbash, M.

J. H. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. L. Guo, “Plasmonic metasurfaces with 42.3% transmission efficiency in the visible,” Light Sci. Appl. 8, 53 (2019).
[Crossref]

Emmerling, M.

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Enoch, S.

Eres, G.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Esposito, M.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Etezadi, D.

D. Etezadi, J. B. Warner, F. S. Ruggeri, G. Dietler, H. A. Lashuel, and H. Altug, “Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection,” Light Sci. Appl. 6, e17029 (2017).
[Crossref]

Fan, S.

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4, e296 (2015).
[Crossref]

Fang, Y.

J. Wu, P. Wang, F. Wang, and Y. Fang, “Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced Raman spectroscopy,” Nanomaterials 8, 864 (2018).
[Crossref]

Fang, Z. Y.

Z. Y. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25, 3840–3856 (2013).
[Crossref]

Fang Lim, S.

L. Li, S. Fang Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101, 113116 (2012).
[Crossref]

Feng, L. G.

Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
[Crossref]

Flores-Acosta, M.

Y. Delgado-Beleño, C. E. Martinez-Nuñez, M. Cortez-Valadez, N. S. Flores-López, and M. Flores-Acosta, “Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications,” Mater. Res. Bull. 99, 385–392 (2018).
[Crossref]

Flores-López, N. S.

Y. Delgado-Beleño, C. E. Martinez-Nuñez, M. Cortez-Valadez, N. S. Flores-López, and M. Flores-Acosta, “Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications,” Mater. Res. Bull. 99, 385–392 (2018).
[Crossref]

Fu, G. L.

G. Q. Liu, Y. Liu, L. Tang, X. S. Liu, G. L. Fu, and Z. Q. Liu, “Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures,” Nanophotonics 8, 1095–1107 (2019).
[Crossref]

Fu, X.

X. Fu, T. Jiang, Q. Zhao, and H. Yin, “Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates,” J. Raman Spectrosc. 43, 1191–1195 (2012).
[Crossref]

Gaddis, A. L.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Ganeev, R. A.

Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, “Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite,” ACS Photon. 5, 1619–1627 (2018).
[Crossref]

Gao, H. T.

Gillibert, R.

R. Gillibert, M. Sarkar, J. Moreau, M. Besbes, M. Canva, and D. L. C. M. Lamy, “Near-field enhancement localization on plasmonic gratings,” J. Phys. Chem. C 120, 27562–27570 (2016).
[Crossref]

Gu, B. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Guo, C. L.

J. H. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. L. Guo, “Plasmonic metasurfaces with 42.3% transmission efficiency in the visible,” Light Sci. Appl. 8, 53 (2019).
[Crossref]

Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, “Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite,” ACS Photon. 5, 1619–1627 (2018).
[Crossref]

B. Wang, S. C. Singh, H. Y. Lu, and C. L. Guo, “Design of aluminum bowtie nanoantenna array with geometrical control to tune LSPR from UV to near-IR for optical sensing,” Plasmonics (2019).
[Crossref]

Guo, L.

L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, and B. Zhao, “Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles,” New J. Chem. 43, 230–237 (2019).
[Crossref]

Guo, M. F.

Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
[Crossref]

Guo, S. S.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

Guo, X. Y.

C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, and L. H. Wang, “Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows,” J. Mater. Chem. B 7, 2001–2008 (2019).
[Crossref]

Guo, Y.

R. M. Liu, Y. Xiong, W. Y. Tang, Y. Guo, X. H. Yan, and M. Z. Si, “Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) studies on oxyheamoglobin (OxyHb) of liver cancer based on PVA-Ag nanofilm,” J. Raman Spectrosc. 44, 362–369 (2013).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, 2005).

Hai, J.

H. Wen, H. Wang, J. Hai, S. S. He, F. J. Chen, and B. D. Wang, “Photochemical synthesis of porous CuFeSe2/Au heterostructured nanospheres as SERS sensor for ultrasensitive detection of lung cancer cells and their biomarkers,” ACS Sustain. Chem. Eng. 7, 5200–5208 (2019).
[Crossref]

Hallen, H. D.

L. Li, S. Fang Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101, 113116 (2012).
[Crossref]

Han, R.

L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, and B. Zhao, “Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles,” New J. Chem. 43, 230–237 (2019).
[Crossref]

Han, X.

L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, and B. Zhao, “Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles,” New J. Chem. 43, 230–237 (2019).
[Crossref]

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19, 11212–11219 (2017).
[Crossref]

Han, Y. K.

D. Joseph, Y. S. Huh, and Y. K. Han, “A top-down chemical approach to tuning the morphology and plasmon resonance of spiky nanostars for enriched SERS-based chemical sensing,” Sens. Actuators B 288, 120–126 (2019).
[Crossref]

Hao, Y. F.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

Hao, Z.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

Hatab, N. A.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

He, S. S.

H. Wen, H. Wang, J. Hai, S. S. He, F. J. Chen, and B. D. Wang, “Photochemical synthesis of porous CuFeSe2/Au heterostructured nanospheres as SERS sensor for ultrasensitive detection of lung cancer cells and their biomarkers,” ACS Sustain. Chem. Eng. 7, 5200–5208 (2019).
[Crossref]

Heil, H. S.

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Heinze, K. G.

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Hoffmann, C.

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Höfling, S.

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Holzgrabe, U.

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Hone, J.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

Hong, G.

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6, 3695–3702 (2012).
[Crossref]

Horneber, A.

Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
[Crossref]

Hou, X.

X. Hou, X. Zhang, W. Yang, Y. Liu, and X. Zhai, “Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer,” Mater. Res. Bull. 47, 2579–2583 (2012).
[Crossref]

Hsueh, C. H.

L. W. Nien, S. C. Lin, B. K. Chao, M. J. Chen, J. H. Li, and C. H. Hsueh, “Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas,” J. Phys. Chem. C 117, 25004–25011 (2013).
[Crossref]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Hu, E. L.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[Crossref]

Hu, J.

M. Pang, J. Hu, and H. C. Zeng, “Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers,” J. Am. Chem. Soc. 132, 10771–10785 (2010).
[Crossref]

Huang, H.

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

Huang, L.

J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
[Crossref]

Huang, S. H.

Huang, Y.

Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
[Crossref]

Huang, Z.

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

Hugall, J. T.

J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95, 141111 (2009).
[Crossref]

Huh, Y. S.

D. Joseph, Y. S. Huh, and Y. K. Han, “A top-down chemical approach to tuning the morphology and plasmon resonance of spiky nanostars for enriched SERS-based chemical sensing,” Sens. Actuators B 288, 120–126 (2019).
[Crossref]

Hui, Z.

W. Zhang, L. Zhang, Z. Hui, X. Zhang, and Y. Qian, “Synthesis of nanocrystalline Ag2S in aqueous solution,” Solid State Ionics 130, 111–114 (2000).
[Crossref]

Hulkko, E.

Irannejad, M.

J. Zhang, M. Irannejad, and B. Cui, “Bowtie nanoantenna with single-digit nanometer gap for surface-enhanced Raman scattering (SERS),” Plasmonics 10, 831–837 (2014).
[Crossref]

Janisch, C.

Jansen, O. T.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Ji, W.

Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
[Crossref]

Jiang, C. Z.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

Jiang, T.

X. Fu, T. Jiang, Q. Zhao, and H. Yin, “Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates,” J. Raman Spectrosc. 43, 1191–1195 (2012).
[Crossref]

Jiang, X.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19, 11212–11219 (2017).
[Crossref]

L. Yang, W. Ruan, X. Jiang, B. Zhao, W. Xu, and J. R. Lombardi, “Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly,” J. Phys. Chem. C 113, 117–120 (2009).
[Crossref]

Jiang, X. F.

Joseph, D.

D. Joseph, Y. S. Huh, and Y. K. Han, “A top-down chemical approach to tuning the morphology and plasmon resonance of spiky nanostars for enriched SERS-based chemical sensing,” Sens. Actuators B 288, 120–126 (2019).
[Crossref]

Kadavanich, A.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

Kamp, M.

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Kang, M. S.

A. Sahu, L. Qi, M. S. Kang, D. Deng, and D. J. Norris, “Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals,” J. Am. Chem. Soc. 133, 6509–6512 (2011).
[Crossref]

Karvinen, P.

Kauk, M.

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Kornyshev, A. A.

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref]

Kostcheev, S.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[Crossref]

Kuittinen, M.

Lam, B.

J. H. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. L. Guo, “Plasmonic metasurfaces with 42.3% transmission efficiency in the visible,” Light Sci. Appl. 8, 53 (2019).
[Crossref]

Lamy, D. L. C. M.

R. Gillibert, M. Sarkar, J. Moreau, M. Besbes, M. Canva, and D. L. C. M. Lamy, “Near-field enhancement localization on plasmonic gratings,” J. Phys. Chem. C 120, 27562–27570 (2016).
[Crossref]

Lashuel, H. A.

D. Etezadi, J. B. Warner, F. S. Ruggeri, G. Dietler, H. A. Lashuel, and H. Altug, “Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection,” Light Sci. Appl. 6, e17029 (2017).
[Crossref]

Li, B. Y.

Li, C.

C. Li, F. Li, Y. Zhang, W. Zhang, X. E. Zhang, and Q. Wang, “Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot,” ACS Nano 9, 12255–12263 (2015).
[Crossref]

Li, F.

C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, and L. H. Wang, “Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows,” J. Mater. Chem. B 7, 2001–2008 (2019).
[Crossref]

C. Li, F. Li, Y. Zhang, W. Zhang, X. E. Zhang, and Q. Wang, “Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot,” ACS Nano 9, 12255–12263 (2015).
[Crossref]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6, 3695–3702 (2012).
[Crossref]

Li, H.

J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
[Crossref]

Li, H. B.

X. Y. Xuan, S. P. Xu, Y. Liu, H. B. Li, W. Q. Xu, and J. R. Lombardi, “A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced Raman scattering,” J. Phys. Chem. Lett. 3, 2773–2778 (2012).
[Crossref]

Li, J. H.

L. W. Nien, S. C. Lin, B. K. Chao, M. J. Chen, J. H. Li, and C. H. Hsueh, “Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas,” J. Phys. Chem. C 117, 25004–25011 (2013).
[Crossref]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Li, L.

L. Li, S. Fang Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101, 113116 (2012).
[Crossref]

Li, M.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, and C. Liu, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15, 1382–1387 (2015).
[Crossref]

Li, P.

L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, and B. Zhao, “Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles,” New J. Chem. 43, 230–237 (2019).
[Crossref]

Li, Q.

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4, e296 (2015).
[Crossref]

Li, R.

Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
[Crossref]

Li, X.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19, 11212–11219 (2017).
[Crossref]

Li, Y.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7, 5147–5151 (2015).
[Crossref]

Li, Y. F.

Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
[Crossref]

Li, Z.

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

Li, Z. Y.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

Liao, L.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

Lin, L. H.

L. H. Lin and Y. B. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref]

Lin, Q.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

Lin, S. C.

L. W. Nien, S. C. Lin, B. K. Chao, M. J. Chen, J. H. Li, and C. H. Hsueh, “Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas,” J. Phys. Chem. C 117, 25004–25011 (2013).
[Crossref]

Liu, C.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, and C. Liu, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15, 1382–1387 (2015).
[Crossref]

Liu, G. Q.

G. Q. Liu, Y. Liu, L. Tang, X. S. Liu, G. L. Fu, and Z. Q. Liu, “Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures,” Nanophotonics 8, 1095–1107 (2019).
[Crossref]

Liu, J.

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
[Crossref]

Liu, L.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7, 5147–5151 (2015).
[Crossref]

Liu, R. M.

R. M. Liu, Y. Xiong, W. Y. Tang, Y. Guo, X. H. Yan, and M. Z. Si, “Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) studies on oxyheamoglobin (OxyHb) of liver cancer based on PVA-Ag nanofilm,” J. Raman Spectrosc. 44, 362–369 (2013).
[Crossref]

Liu, T. L.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[Crossref]

Liu, X.

S. Pan, X. Liu, and X. Wang, “Preparation of Ag2S-Graphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity,” Mater. Charact. 62, 1094–1101 (2011).
[Crossref]

Liu, X. S.

G. Q. Liu, Y. Liu, L. Tang, X. S. Liu, G. L. Fu, and Z. Q. Liu, “Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures,” Nanophotonics 8, 1095–1107 (2019).
[Crossref]

Liu, Y.

G. Q. Liu, Y. Liu, L. Tang, X. S. Liu, G. L. Fu, and Z. Q. Liu, “Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures,” Nanophotonics 8, 1095–1107 (2019).
[Crossref]

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, and B. Zhao, “Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles,” New J. Chem. 43, 230–237 (2019).
[Crossref]

X. Hou, X. Zhang, W. Yang, Y. Liu, and X. Zhai, “Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer,” Mater. Res. Bull. 47, 2579–2583 (2012).
[Crossref]

X. Y. Xuan, S. P. Xu, Y. Liu, H. B. Li, W. Q. Xu, and J. R. Lombardi, “A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced Raman scattering,” J. Phys. Chem. Lett. 3, 2773–2778 (2012).
[Crossref]

Liu, Z. Q.

G. Q. Liu, Y. Liu, L. Tang, X. S. Liu, G. L. Fu, and Z. Q. Liu, “Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures,” Nanophotonics 8, 1095–1107 (2019).
[Crossref]

Liu, Z. W.

Lombardi, J. R.

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

X. Y. Xuan, S. P. Xu, Y. Liu, H. B. Li, W. Q. Xu, and J. R. Lombardi, “A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced Raman scattering,” J. Phys. Chem. Lett. 3, 2773–2778 (2012).
[Crossref]

L. Yang, W. Ruan, X. Jiang, B. Zhao, W. Xu, and J. R. Lombardi, “Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly,” J. Phys. Chem. C 113, 117–120 (2009).
[Crossref]

Z. Sun, C. Wang, J. Yang, B. Zhao, and J. R. Lombardi, “Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 6093–6098 (2008).
[Crossref]

C. Chenal, R. L. Birke, and J. R. Lombardi, “Determination of the degree of charge-transfer contributions to surface-enhanced Raman spectroscopy,” Chem. Phys. Chem. 9, 1617–1623 (2008).
[Crossref]

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 5605–5617 (2008).
[Crossref]

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions,” J. Chem. Phys. 84, 4174–4180 (1986).
[Crossref]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Lu, C.

C. Lu, G. Chen, B. Yu, and H. Cong, “Recent advances of low biological toxicity Ag2S QDs for biomedical application,” Adv. Eng. Mater. 20, 1700940 (2018).
[Crossref]

Lu, H. Y.

B. Wang, S. C. Singh, H. Y. Lu, and C. L. Guo, “Design of aluminum bowtie nanoantenna array with geometrical control to tune LSPR from UV to near-IR for optical sensing,” Plasmonics (2019).
[Crossref]

Lu, M.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

Lu, T.

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions,” J. Chem. Phys. 84, 4174–4180 (1986).
[Crossref]

Lu, Y.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, and C. Liu, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15, 1382–1387 (2015).
[Crossref]

Luca, A. D.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Mahajan, S.

J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95, 141111 (2009).
[Crossref]

Manna, L.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

Mao, L.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, and C. Liu, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15, 1382–1387 (2015).
[Crossref]

Mao, S.

J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
[Crossref]

Martinez-Nuñez, C. E.

Y. Delgado-Beleño, C. E. Martinez-Nuñez, M. Cortez-Valadez, N. S. Flores-López, and M. Flores-Acosta, “Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications,” Mater. Res. Bull. 99, 385–392 (2018).
[Crossref]

Matsuda, N.

M. Osawa, N. Matsuda, K. Yoshii, and I. Uchida, “Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution,” J. Phys. Chem. 98, 12702–12707 (1994).
[Crossref]

Maturavongsadit, P.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

Meixner, A. J.

Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
[Crossref]

Miao, P.

Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
[Crossref]

Moreau, J.

R. Gillibert, M. Sarkar, J. Moreau, M. Besbes, M. Canva, and D. L. C. M. Lamy, “Near-field enhancement localization on plasmonic gratings,” J. Phys. Chem. C 120, 27562–27570 (2016).
[Crossref]

Murai, S.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Ni, Y.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, and C. Liu, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15, 1382–1387 (2015).
[Crossref]

Nicotra, G.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Nie, S. M.

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37, 912–920 (2008).
[Crossref]

Nie, W.

J. Wu, Y. Zhou, W. Nie, and P. Chen, “One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications,” J. Nanopart. Res. 20, 7 (2018).
[Crossref]

Nien, L. W.

L. W. Nien, S. C. Lin, B. K. Chao, M. J. Chen, J. H. Li, and C. H. Hsueh, “Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas,” J. Phys. Chem. C 117, 25004–25011 (2013).
[Crossref]

Norris, D. J.

A. Sahu, L. Qi, M. S. Kang, D. Deng, and D. J. Norris, “Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals,” J. Am. Chem. Soc. 133, 6509–6512 (2011).
[Crossref]

Nuutinen, T.

Osawa, M.

M. Osawa, N. Matsuda, K. Yoshii, and I. Uchida, “Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution,” J. Phys. Chem. 98, 12702–12707 (1994).
[Crossref]

Ozaki, Y.

Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
[Crossref]

Özdemir, S. K.

Paget, J.

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref]

Palermo, G.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1991).

Pan, L.

Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
[Crossref]

Pan, S.

S. Pan, X. Liu, and X. Wang, “Preparation of Ag2S-Graphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity,” Mater. Charact. 62, 1094–1101 (2011).
[Crossref]

Pang, M.

M. Pang, J. Hu, and H. C. Zeng, “Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers,” J. Am. Chem. Soc. 132, 10771–10785 (2010).
[Crossref]

Passaseo, A.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Peng, B.

Peng, X.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

Peng, Y.

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

Puretzky, A. A.

L. Li, S. Fang Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101, 113116 (2012).
[Crossref]

Qi, L.

A. Sahu, L. Qi, M. S. Kang, D. Deng, and D. J. Norris, “Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals,” J. Am. Chem. Soc. 133, 6509–6512 (2011).
[Crossref]

Qian, X. M.

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37, 912–920 (2008).
[Crossref]

Qian, Y.

W. Zhang, L. Zhang, Z. Hui, X. Zhang, and Y. Qian, “Synthesis of nanocrystalline Ag2S in aqueous solution,” Solid State Ionics 130, 111–114 (2000).
[Crossref]

Qin, G.

W. Wang, J. Zhang, X. Che, and G. Qin, “Large absorption enhancement in ultrathin solar cells patterned by metallic nanocavity arrays,” Sci. Rep. 6, 34219 (2016).
[Crossref]

Quidant, R.

Ren, X.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7, 5147–5151 (2015).
[Crossref]

Retterer, S. T.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Riehn, R.

L. Li, S. Fang Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101, 113116 (2012).
[Crossref]

Rivas, J. G.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Rodríguez, S. R. K.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Rong, Z.

J. W. Xu, C. W. Wang, Z. Rong, X. A. Cheng, and R. Xiao, “A graphene-interlayered magnetic composite as a multifunctional SERS substrate,” RSC Adv. 5, 62101–62109 (2015).
[Crossref]

Royer, P.

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[Crossref]

Ruan, W.

Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
[Crossref]

L. Yang, W. Ruan, X. Jiang, B. Zhao, W. Xu, and J. R. Lombardi, “Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly,” J. Phys. Chem. C 113, 117–120 (2009).
[Crossref]

Ruan, Y.

D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
[Crossref]

Ruggeri, F. S.

D. Etezadi, J. B. Warner, F. S. Ruggeri, G. Dietler, H. A. Lashuel, and H. Altug, “Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection,” Light Sci. Appl. 6, e17029 (2017).
[Crossref]

Russell, K. J.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[Crossref]

Sahu, A.

A. Sahu, L. Qi, M. S. Kang, D. Deng, and D. J. Norris, “Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals,” J. Am. Chem. Soc. 133, 6509–6512 (2011).
[Crossref]

Sanvitto, D.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Sarkar, M.

R. Gillibert, M. Sarkar, J. Moreau, M. Besbes, M. Canva, and D. L. C. M. Lamy, “Near-field enhancement localization on plasmonic gratings,” J. Phys. Chem. C 120, 27562–27570 (2016).
[Crossref]

Scher, E.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

Schreiber, B.

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Scuderi, M.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Shan, C. X.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

Shen, W.

J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
[Crossref]

Shindo, H.

H. Shindo, “Raman spectra of acrylonitrile adsorbed on a silver electrode,” Chem. Phys. Lett. 159, 85–89 (1989).
[Crossref]

Si, M. Z.

R. M. Liu, Y. Xiong, W. Y. Tang, Y. Guo, X. H. Yan, and M. Z. Si, “Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) studies on oxyheamoglobin (OxyHb) of liver cancer based on PVA-Ag nanofilm,” J. Raman Spectrosc. 44, 362–369 (2013).
[Crossref]

Simeone, D.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Singh, S. C.

J. H. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. L. Guo, “Plasmonic metasurfaces with 42.3% transmission efficiency in the visible,” Light Sci. Appl. 8, 53 (2019).
[Crossref]

B. Wang, S. C. Singh, H. Y. Lu, and C. L. Guo, “Design of aluminum bowtie nanoantenna array with geometrical control to tune LSPR from UV to near-IR for optical sensing,” Plasmonics (2019).
[Crossref]

Song, C. Y.

C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, and L. H. Wang, “Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows,” J. Mater. Chem. B 7, 2001–2008 (2019).
[Crossref]

Song, W.

Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
[Crossref]

Stein, A.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

Sun, K.

D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
[Crossref]

Sun, M. T.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

Sun, X.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19, 11212–11219 (2017).
[Crossref]

Sun, Z.

Z. Sun, C. Wang, J. Yang, B. Zhao, and J. R. Lombardi, “Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 6093–6098 (2008).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, 2005).

Tang, J.

J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
[Crossref]

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7, 5147–5151 (2015).
[Crossref]

Tang, L.

G. Q. Liu, Y. Liu, L. Tang, X. S. Liu, G. L. Fu, and Z. Q. Liu, “Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures,” Nanophotonics 8, 1095–1107 (2019).
[Crossref]

Tang, W. Y.

R. M. Liu, Y. Xiong, W. Y. Tang, Y. Guo, X. H. Yan, and M. Z. Si, “Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) studies on oxyheamoglobin (OxyHb) of liver cancer based on PVA-Ag nanofilm,” J. Raman Spectrosc. 44, 362–369 (2013).
[Crossref]

Tasco, V.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Tessmer, I.

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Todisco, F.

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

Toppari, J. J.

Turek, V. A.

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref]

Uchida, I.

M. Osawa, N. Matsuda, K. Yoshii, and I. Uchida, “Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution,” J. Phys. Chem. 98, 12702–12707 (1994).
[Crossref]

van den Berg, M.

Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
[Crossref]

Van Duyne, P. R.

A. B. Zrimsek, N. L. Wong, and P. R. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof,” J. Phys. Chem. C 120, 5133–5142 (2016).
[Crossref]

Vartiainen, E. M.

Verschuuren, M. A.

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Wang, B.

B. Wang, S. C. Singh, H. Y. Lu, and C. L. Guo, “Design of aluminum bowtie nanoantenna array with geometrical control to tune LSPR from UV to near-IR for optical sensing,” Plasmonics (2019).
[Crossref]

Wang, B. D.

H. Wen, H. Wang, J. Hai, S. S. He, F. J. Chen, and B. D. Wang, “Photochemical synthesis of porous CuFeSe2/Au heterostructured nanospheres as SERS sensor for ultrasensitive detection of lung cancer cells and their biomarkers,” ACS Sustain. Chem. Eng. 7, 5200–5208 (2019).
[Crossref]

Wang, C.

Z. Sun, C. Wang, J. Yang, B. Zhao, and J. R. Lombardi, “Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 6093–6098 (2008).
[Crossref]

Wang, C. W.

J. W. Xu, C. W. Wang, Z. Rong, X. A. Cheng, and R. Xiao, “A graphene-interlayered magnetic composite as a multifunctional SERS substrate,” RSC Adv. 5, 62101–62109 (2015).
[Crossref]

Wang, D.

Wang, F.

J. Wu, P. Wang, F. Wang, and Y. Fang, “Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced Raman spectroscopy,” Nanomaterials 8, 864 (2018).
[Crossref]

Wang, H.

H. Wen, H. Wang, J. Hai, S. S. He, F. J. Chen, and B. D. Wang, “Photochemical synthesis of porous CuFeSe2/Au heterostructured nanospheres as SERS sensor for ultrasensitive detection of lung cancer cells and their biomarkers,” ACS Sustain. Chem. Eng. 7, 5200–5208 (2019).
[Crossref]

Wang, L. H.

C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, and L. H. Wang, “Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows,” J. Mater. Chem. B 7, 2001–2008 (2019).
[Crossref]

Wang, P.

J. Wu, P. Wang, F. Wang, and Y. Fang, “Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced Raman spectroscopy,” Nanomaterials 8, 864 (2018).
[Crossref]

Wang, Q.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

C. Li, F. Li, Y. Zhang, W. Zhang, X. E. Zhang, and Q. Wang, “Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot,” ACS Nano 9, 12255–12263 (2015).
[Crossref]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6, 3695–3702 (2012).
[Crossref]

Wang, S.

Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
[Crossref]

Wang, W.

J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
[Crossref]

W. Wang, J. Zhang, X. Che, and G. Qin, “Large absorption enhancement in ultrathin solar cells patterned by metallic nanocavity arrays,” Sci. Rep. 6, 34219 (2016).
[Crossref]

Wang, X.

D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
[Crossref]

Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
[Crossref]

S. Pan, X. Liu, and X. Wang, “Preparation of Ag2S-Graphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity,” Mater. Charact. 62, 1094–1101 (2011).
[Crossref]

Wang, Y.

J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
[Crossref]

Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
[Crossref]

Warner, J. B.

D. Etezadi, J. B. Warner, F. S. Ruggeri, G. Dietler, H. A. Lashuel, and H. Altug, “Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection,” Light Sci. Appl. 6, e17029 (2017).
[Crossref]

Wei, R.

J. H. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. L. Guo, “Plasmonic metasurfaces with 42.3% transmission efficiency in the visible,” Light Sci. Appl. 8, 53 (2019).
[Crossref]

Wen, H.

H. Wen, H. Wang, J. Hai, S. S. He, F. J. Chen, and B. D. Wang, “Photochemical synthesis of porous CuFeSe2/Au heterostructured nanospheres as SERS sensor for ultrasensitive detection of lung cancer cells and their biomarkers,” ACS Sustain. Chem. Eng. 7, 5200–5208 (2019).
[Crossref]

Wickham, J.

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

Wong, N. L.

A. B. Zrimsek, N. L. Wong, and P. R. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof,” J. Phys. Chem. C 120, 5133–5142 (2016).
[Crossref]

Wu, D.

D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
[Crossref]

Wu, J.

J. Wu, P. Wang, F. Wang, and Y. Fang, “Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced Raman spectroscopy,” Nanomaterials 8, 864 (2018).
[Crossref]

J. Wu, Y. Zhou, W. Nie, and P. Chen, “One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications,” J. Nanopart. Res. 20, 7 (2018).
[Crossref]

Wu, W.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

Xiao, R.

J. W. Xu, C. W. Wang, Z. Rong, X. A. Cheng, and R. Xiao, “A graphene-interlayered magnetic composite as a multifunctional SERS substrate,” RSC Adv. 5, 62101–62109 (2015).
[Crossref]

Xiao, X. H.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

Xie, F.

D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
[Crossref]

Xie, W.

D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
[Crossref]

Xin, W.

Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, “Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite,” ACS Photon. 5, 1619–1627 (2018).
[Crossref]

Xing, J.

Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, “Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite,” ACS Photon. 5, 1619–1627 (2018).
[Crossref]

Xiong, Y.

R. M. Liu, Y. Xiong, W. Y. Tang, Y. Guo, X. H. Yan, and M. Z. Si, “Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) studies on oxyheamoglobin (OxyHb) of liver cancer based on PVA-Ag nanofilm,” J. Raman Spectrosc. 44, 362–369 (2013).
[Crossref]

Xu, J.

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions,” J. Chem. Phys. 84, 4174–4180 (1986).
[Crossref]

Xu, J. W.

J. W. Xu, C. W. Wang, Z. Rong, X. A. Cheng, and R. Xiao, “A graphene-interlayered magnetic composite as a multifunctional SERS substrate,” RSC Adv. 5, 62101–62109 (2015).
[Crossref]

Xu, P.

Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
[Crossref]

Xu, S. P.

X. Y. Xuan, S. P. Xu, Y. Liu, H. B. Li, W. Q. Xu, and J. R. Lombardi, “A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced Raman scattering,” J. Phys. Chem. Lett. 3, 2773–2778 (2012).
[Crossref]

Xu, W.

L. Yang, W. Ruan, X. Jiang, B. Zhao, W. Xu, and J. R. Lombardi, “Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly,” J. Phys. Chem. C 113, 117–120 (2009).
[Crossref]

Xu, W. Q.

X. Y. Xuan, S. P. Xu, Y. Liu, H. B. Li, W. Q. Xu, and J. R. Lombardi, “A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced Raman scattering,” J. Phys. Chem. Lett. 3, 2773–2778 (2012).
[Crossref]

Xu, X. F.

Y. Chen, Y. H. Chen, J. R. Chu, and X. F. Xu, “Bridged bowtie aperture antenna for producing an electromagnetic hot spot,” ACS Photon. 4, 567–575 (2017).
[Crossref]

Xuan, X. Y.

X. Y. Xuan, S. P. Xu, Y. Liu, H. B. Li, W. Q. Xu, and J. R. Lombardi, “A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced Raman scattering,” J. Phys. Chem. Lett. 3, 2773–2778 (2012).
[Crossref]

Xue, J.

J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
[Crossref]

Yan, X. H.

R. M. Liu, Y. Xiong, W. Y. Tang, Y. Guo, X. H. Yan, and M. Z. Si, “Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) studies on oxyheamoglobin (OxyHb) of liver cancer based on PVA-Ag nanofilm,” J. Raman Spectrosc. 44, 362–369 (2013).
[Crossref]

Yang, H.

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7, 5147–5151 (2015).
[Crossref]

Yang, J.

J. Yang and J. Y. Ying, “Nanocomposites of Ag2S and noble metals,” Angew. Chem. (Int. Ed.) 50, 4637–4643 (2011).
[Crossref]

Z. Sun, C. Wang, J. Yang, B. Zhao, and J. R. Lombardi, “Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 6093–6098 (2008).
[Crossref]

Yang, L.

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

S. H. Huang, X. F. Jiang, B. Peng, C. Janisch, A. Cocking, S. K. Özdemir, Z. W. Liu, and L. Yang, “Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance,” Photon. Res. 6, 346–356 (2018).
[Crossref]

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19, 11212–11219 (2017).
[Crossref]

L. Yang, W. Ruan, X. Jiang, B. Zhao, W. Xu, and J. R. Lombardi, “Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly,” J. Phys. Chem. C 113, 117–120 (2009).
[Crossref]

Yang, M.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19, 11212–11219 (2017).
[Crossref]

Yang, W.

X. Hou, X. Zhang, W. Yang, Y. Liu, and X. Zhai, “Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer,” Mater. Res. Bull. 47, 2579–2583 (2012).
[Crossref]

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

Yang, Y.

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

Yin, D.

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19, 11212–11219 (2017).
[Crossref]

Yin, H.

X. Fu, T. Jiang, Q. Zhao, and H. Yin, “Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates,” J. Raman Spectrosc. 43, 1191–1195 (2012).
[Crossref]

Ying, J. J.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

Ying, J. Y.

J. Yang and J. Y. Ying, “Nanocomposites of Ag2S and noble metals,” Angew. Chem. (Int. Ed.) 50, 4637–4643 (2011).
[Crossref]

Yoshii, K.

M. Osawa, N. Matsuda, K. Yoshii, and I. Uchida, “Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution,” J. Phys. Chem. 98, 12702–12707 (1994).
[Crossref]

You, O.

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4, e296 (2015).
[Crossref]

Yu, B.

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

C. Lu, G. Chen, B. Yu, and H. Cong, “Recent advances of low biological toxicity Ag2S QDs for biomedical application,” Adv. Eng. Mater. 20, 1700940 (2018).
[Crossref]

Yu, N. F.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

Yu, W. L.

Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, “Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite,” ACS Photon. 5, 1619–1627 (2018).
[Crossref]

Yu, Z.

Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, “Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite,” ACS Photon. 5, 1619–1627 (2018).
[Crossref]

Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
[Crossref]

Yun, F.

Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
[Crossref]

Zeng, H. C.

M. Pang, J. Hu, and H. C. Zeng, “Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers,” J. Am. Chem. Soc. 132, 10771–10785 (2010).
[Crossref]

Zhai, X.

X. Hou, X. Zhang, W. Yang, Y. Liu, and X. Zhai, “Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer,” Mater. Res. Bull. 47, 2579–2583 (2012).
[Crossref]

Zhang, C.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, and C. Liu, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15, 1382–1387 (2015).
[Crossref]

Zhang, D.

Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
[Crossref]

Zhang, J.

W. Wang, J. Zhang, X. Che, and G. Qin, “Large absorption enhancement in ultrathin solar cells patterned by metallic nanocavity arrays,” Sci. Rep. 6, 34219 (2016).
[Crossref]

J. Zhang, M. Irannejad, and B. Cui, “Bowtie nanoantenna with single-digit nanometer gap for surface-enhanced Raman scattering (SERS),” Plasmonics 10, 831–837 (2014).
[Crossref]

Zhang, J. H.

J. H. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. L. Guo, “Plasmonic metasurfaces with 42.3% transmission efficiency in the visible,” Light Sci. Appl. 8, 53 (2019).
[Crossref]

Zhang, J. J.

C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, and L. H. Wang, “Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows,” J. Mater. Chem. B 7, 2001–2008 (2019).
[Crossref]

Zhang, J. Y.

C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, and L. H. Wang, “Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows,” J. Mater. Chem. B 7, 2001–2008 (2019).
[Crossref]

Zhang, K.

D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
[Crossref]

Zhang, L.

W. Zhang, L. Zhang, Z. Hui, X. Zhang, and Y. Qian, “Synthesis of nanocrystalline Ag2S in aqueous solution,” Solid State Ionics 130, 111–114 (2000).
[Crossref]

Zhang, W.

C. Li, F. Li, Y. Zhang, W. Zhang, X. E. Zhang, and Q. Wang, “Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot,” ACS Nano 9, 12255–12263 (2015).
[Crossref]

W. Zhang, L. Zhang, Z. Hui, X. Zhang, and Y. Qian, “Synthesis of nanocrystalline Ag2S in aqueous solution,” Solid State Ionics 130, 111–114 (2000).
[Crossref]

Zhang, X.

L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, and B. Zhao, “Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles,” New J. Chem. 43, 230–237 (2019).
[Crossref]

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7, 5147–5151 (2015).
[Crossref]

X. Hou, X. Zhang, W. Yang, Y. Liu, and X. Zhai, “Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer,” Mater. Res. Bull. 47, 2579–2583 (2012).
[Crossref]

W. Zhang, L. Zhang, Z. Hui, X. Zhang, and Y. Qian, “Synthesis of nanocrystalline Ag2S in aqueous solution,” Solid State Ionics 130, 111–114 (2000).
[Crossref]

Zhang, X. E.

C. Li, F. Li, Y. Zhang, W. Zhang, X. E. Zhang, and Q. Wang, “Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot,” ACS Nano 9, 12255–12263 (2015).
[Crossref]

Zhang, Y.

Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
[Crossref]

C. Li, F. Li, Y. Zhang, W. Zhang, X. E. Zhang, and Q. Wang, “Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot,” ACS Nano 9, 12255–12263 (2015).
[Crossref]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6, 3695–3702 (2012).
[Crossref]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6, 3695–3702 (2012).
[Crossref]

Zhang, Y. P.

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

Zhang, Z. Y.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Zhao, B.

L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, and B. Zhao, “Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles,” New J. Chem. 43, 230–237 (2019).
[Crossref]

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19, 11212–11219 (2017).
[Crossref]

Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
[Crossref]

L. Yang, W. Ruan, X. Jiang, B. Zhao, W. Xu, and J. R. Lombardi, “Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly,” J. Phys. Chem. C 113, 117–120 (2009).
[Crossref]

Z. Sun, C. Wang, J. Yang, B. Zhao, and J. R. Lombardi, “Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 6093–6098 (2008).
[Crossref]

Zhao, H. Q.

Zhao, J.

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

Zhao, Q.

X. Fu, T. Jiang, Q. Zhao, and H. Yin, “Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates,” J. Raman Spectrosc. 43, 1191–1195 (2012).
[Crossref]

Zhao, X.

D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
[Crossref]

Zhao, Y. K.

Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
[Crossref]

Zheng, Y. B.

L. H. Lin and Y. B. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref]

Zhou, Y.

J. Wu, Y. Zhou, W. Nie, and P. Chen, “One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications,” J. Nanopart. Res. 20, 7 (2018).
[Crossref]

Zhu, W.

Zhu, X.

Z. Y. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25, 3840–3856 (2013).
[Crossref]

Zhu, Y. B.

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

Zhu, Z.

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4, e296 (2015).
[Crossref]

Zrimsek, A. B.

A. B. Zrimsek, N. L. Wong, and P. R. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof,” J. Phys. Chem. C 120, 5133–5142 (2016).
[Crossref]

ACS Nano (3)

Y. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and Stokes frequencies,” ACS Nano 4, 2804–2810 (2010).
[Crossref]

Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai, and Q. Wang, “Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window,” ACS Nano 6, 3695–3702 (2012).
[Crossref]

C. Li, F. Li, Y. Zhang, W. Zhang, X. E. Zhang, and Q. Wang, “Real-time monitoring surface chemistry-dependent in vivo behaviors of protein nanocages via encapsulating an NIR-II Ag2S quantum dot,” ACS Nano 9, 12255–12263 (2015).
[Crossref]

ACS Photon. (4)

Y. Chen, Y. H. Chen, J. R. Chu, and X. F. Xu, “Bridged bowtie aperture antenna for producing an electromagnetic hot spot,” ACS Photon. 4, 567–575 (2017).
[Crossref]

D. Simeone, M. Esposito, M. Scuderi, G. Calafiore, G. Palermo, A. D. Luca, F. Todisco, D. Sanvitto, G. Nicotra, S. Cabrini, V. Tasco, A. Passaseo, and M. Cuscunà, “Tailoring electromagnetic hot spots toward visible frequencies in ultra-narrow gap Al/Al2O3 bowtie nanoantennas,” ACS Photon. 5, 3399–3407 (2018).
[Crossref]

B. Schreiber, M. Kauk, H. S. Heil, M. Emmerling, I. Tessmer, M. Kamp, S. Höfling, U. Holzgrabe, C. Hoffmann, and K. G. Heinze, “Enhanced fluorescence resonance energy transfer in G-protein-coupled receptor probes on nanocoated microscopy coverslips,” ACS Photon. 5, 2225–2233 (2018).
[Crossref]

Z. Yu, W. L. Yu, J. Xing, R. A. Ganeev, W. Xin, J. L. Cheng, and C. L. Guo, “Charge transfer effects on resonance-enhanced Raman scattering for molecules adsorbed on single-crystalline perovskite,” ACS Photon. 5, 1619–1627 (2018).
[Crossref]

ACS Sustain. Chem. Eng. (1)

H. Wen, H. Wang, J. Hai, S. S. He, F. J. Chen, and B. D. Wang, “Photochemical synthesis of porous CuFeSe2/Au heterostructured nanospheres as SERS sensor for ultrasensitive detection of lung cancer cells and their biomarkers,” ACS Sustain. Chem. Eng. 7, 5200–5208 (2019).
[Crossref]

Adv. Eng. Mater. (1)

C. Lu, G. Chen, B. Yu, and H. Cong, “Recent advances of low biological toxicity Ag2S QDs for biomedical application,” Adv. Eng. Mater. 20, 1700940 (2018).
[Crossref]

Adv. Mater. (1)

Z. Y. Fang and X. Zhu, “Plasmonics in nanostructures,” Adv. Mater. 25, 3840–3856 (2013).
[Crossref]

Adv. Sci. (1)

L. Yang, Y. Peng, Y. Yang, J. Liu, H. Huang, B. Yu, J. Zhao, Y. Liu, Z. Huang, Z. Li, and J. R. Lombardi, “A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect,” Adv. Sci. 6, 1900310 (2019).
[Crossref]

Angew. Chem. (Int. Ed.) (1)

J. Yang and J. Y. Ying, “Nanocomposites of Ag2S and noble metals,” Angew. Chem. (Int. Ed.) 50, 4637–4643 (2011).
[Crossref]

Appl. Phys. Lett. (2)

L. Li, S. Fang Lim, A. A. Puretzky, R. Riehn, and H. D. Hallen, “Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna,” Appl. Phys. Lett. 101, 113116 (2012).
[Crossref]

J. T. Hugall, J. J. Baumberg, and S. Mahajan, “Surface-enhanced Raman spectroscopy of CdSe quantum dots on nanostructured plasmonic surfaces,” Appl. Phys. Lett. 95, 141111 (2009).
[Crossref]

Chem. Phys. Chem. (1)

C. Chenal, R. L. Birke, and J. R. Lombardi, “Determination of the degree of charge-transfer contributions to surface-enhanced Raman spectroscopy,” Chem. Phys. Chem. 9, 1617–1623 (2008).
[Crossref]

Chem. Phys. Lett. (1)

H. Shindo, “Raman spectra of acrylonitrile adsorbed on a silver electrode,” Chem. Phys. Lett. 159, 85–89 (1989).
[Crossref]

Chem. Soc. Rev. (1)

X. M. Qian and S. M. Nie, “Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications,” Chem. Soc. Rev. 37, 912–920 (2008).
[Crossref]

J. Am. Chem. Soc. (2)

A. Sahu, L. Qi, M. S. Kang, D. Deng, and D. J. Norris, “Facile synthesis of silver chalcogenide (Ag2E; E = Se, S, Te) semiconductor nanocrystals,” J. Am. Chem. Soc. 133, 6509–6512 (2011).
[Crossref]

M. Pang, J. Hu, and H. C. Zeng, “Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers,” J. Am. Chem. Soc. 132, 10771–10785 (2010).
[Crossref]

J. Appl. Phys. (1)

W. Ding, R. Bachelot, S. Kostcheev, P. Royer, and R. E. de Lamaestre, “Surface plasmon resonances in silver Bowtie nanoantennas with varied bow angles,” J. Appl. Phys. 108, 124314 (2010).
[Crossref]

J. Chem. Phys. (1)

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg-Teller contributions,” J. Chem. Phys. 84, 4174–4180 (1986).
[Crossref]

J. Mater. Chem. B (1)

C. Y. Song, F. Li, X. Y. Guo, W. Q. Chen, C. Dong, J. J. Zhang, J. Y. Zhang, and L. H. Wang, “Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows,” J. Mater. Chem. B 7, 2001–2008 (2019).
[Crossref]

J. Mater. Chem. C. (1)

D. Wu, J. Chen, Y. Ruan, K. Sun, K. Zhang, W. Xie, F. Xie, X. Zhao, and X. Wang, “A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system,” J. Mater. Chem. C. 6, 12547–12554 (2018).
[Crossref]

J. Nanopart. Res. (1)

J. Wu, Y. Zhou, W. Nie, and P. Chen, “One-step synthesis of Ag2S/Ag@MoS2 nanocomposites for SERS and photocatalytic applications,” J. Nanopart. Res. 20, 7 (2018).
[Crossref]

J. Phys. Chem. (1)

M. Osawa, N. Matsuda, K. Yoshii, and I. Uchida, “Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution,” J. Phys. Chem. 98, 12702–12707 (1994).
[Crossref]

J. Phys. Chem. C (6)

Z. Sun, C. Wang, J. Yang, B. Zhao, and J. R. Lombardi, “Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 6093–6098 (2008).
[Crossref]

L. Yang, W. Ruan, X. Jiang, B. Zhao, W. Xu, and J. R. Lombardi, “Contribution of ZnO to charge-transfer induced surface-enhanced Raman scattering in Au/ZnO/PATP assembly,” J. Phys. Chem. C 113, 117–120 (2009).
[Crossref]

J. R. Lombardi and R. L. Birke, “A unified approach to surface-enhanced Raman spectroscopy,” J. Phys. Chem. C 112, 5605–5617 (2008).
[Crossref]

A. B. Zrimsek, N. L. Wong, and P. R. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof,” J. Phys. Chem. C 120, 5133–5142 (2016).
[Crossref]

L. W. Nien, S. C. Lin, B. K. Chao, M. J. Chen, J. H. Li, and C. H. Hsueh, “Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie nanoantennas,” J. Phys. Chem. C 117, 25004–25011 (2013).
[Crossref]

R. Gillibert, M. Sarkar, J. Moreau, M. Besbes, M. Canva, and D. L. C. M. Lamy, “Near-field enhancement localization on plasmonic gratings,” J. Phys. Chem. C 120, 27562–27570 (2016).
[Crossref]

J. Phys. Chem. Lett. (1)

X. Y. Xuan, S. P. Xu, Y. Liu, H. B. Li, W. Q. Xu, and J. R. Lombardi, “A long-range surface plasmon resonance/probe/silver nanoparticle (LRSPR-P-NP) nanoantenna configuration for surface-enhanced Raman scattering,” J. Phys. Chem. Lett. 3, 2773–2778 (2012).
[Crossref]

J. Raman Spectrosc. (2)

R. M. Liu, Y. Xiong, W. Y. Tang, Y. Guo, X. H. Yan, and M. Z. Si, “Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) studies on oxyheamoglobin (OxyHb) of liver cancer based on PVA-Ag nanofilm,” J. Raman Spectrosc. 44, 362–369 (2013).
[Crossref]

X. Fu, T. Jiang, Q. Zhao, and H. Yin, “Charge-transfer contributions in surface-enhanced Raman scattering from Ag, Ag2S and Ag2Se substrates,” J. Raman Spectrosc. 43, 1191–1195 (2012).
[Crossref]

Light Sci. Appl. (6)

G. Lozano, D. J. Louwers, S. R. K. Rodríguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. G. Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2, e66 (2013).
[Crossref]

Z. Zhu, B. Bai, O. You, Q. Li, and S. Fan, “Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application,” Light Sci. Appl. 4, e296 (2015).
[Crossref]

D. Etezadi, J. B. Warner, F. S. Ruggeri, G. Dietler, H. A. Lashuel, and H. Altug, “Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection,” Light Sci. Appl. 6, e17029 (2017).
[Crossref]

Y. B. Zhu, Z. Y. Li, Z. Hao, C. DiMarco, P. Maturavongsadit, Y. F. Hao, M. Lu, A. Stein, Q. Wang, J. Hone, N. F. Yu, and Q. Lin, “Optical conductivity-based ultrasensitive mid-infrared biosensing on a hybrid metasurface,” Light Sci. Appl. 7, 67 (2018).
[Crossref]

J. H. Zhang, M. ElKabbash, R. Wei, S. C. Singh, B. Lam, and C. L. Guo, “Plasmonic metasurfaces with 42.3% transmission efficiency in the visible,” Light Sci. Appl. 8, 53 (2019).
[Crossref]

Z. G. Dai, X. H. Xiao, W. Wu, Y. P. Zhang, L. Liao, S. S. Guo, J. J. Ying, C. X. Shan, M. T. Sun, and C. Z. Jiang, “Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation,” Light Sci. Appl. 4, e342 (2015).
[Crossref]

Mater. Charact. (1)

S. Pan, X. Liu, and X. Wang, “Preparation of Ag2S-Graphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity,” Mater. Charact. 62, 1094–1101 (2011).
[Crossref]

Mater. Res. Bull. (3)

X. Hou, X. Zhang, W. Yang, Y. Liu, and X. Zhai, “Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer,” Mater. Res. Bull. 47, 2579–2583 (2012).
[Crossref]

J. Xue, J. Liu, S. Mao, Y. Wang, W. Shen, W. Wang, L. Huang, H. Li, and J. Tang, “Recent progress in synthetic methods and applications in solar cells of Ag2S quantum dots,” Mater. Res. Bull. 106, 113–123 (2018).
[Crossref]

Y. Delgado-Beleño, C. E. Martinez-Nuñez, M. Cortez-Valadez, N. S. Flores-López, and M. Flores-Acosta, “Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications,” Mater. Res. Bull. 99, 385–392 (2018).
[Crossref]

Nano Lett. (2)

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, and C. Liu, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15, 1382–1387 (2015).
[Crossref]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Y. Zhang, and B. H. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10, 4952–4955 (2010).
[Crossref]

Nanomaterials (1)

J. Wu, P. Wang, F. Wang, and Y. Fang, “Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced Raman spectroscopy,” Nanomaterials 8, 864 (2018).
[Crossref]

Nanophotonics (2)

Y. T. Chen, L. Pan, A. Horneber, M. van den Berg, P. Miao, P. Xu, P. M. Adam, A. J. Meixner, and D. Zhang, “Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film,” Nanophotonics 8, 1533–1546 (2019).
[Crossref]

G. Q. Liu, Y. Liu, L. Tang, X. S. Liu, G. L. Fu, and Z. Q. Liu, “Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures,” Nanophotonics 8, 1095–1107 (2019).
[Crossref]

Nanoscale (1)

L. Liu, H. Yang, X. Ren, J. Tang, Y. Li, X. Zhang, and Z. Cheng, “Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates,” Nanoscale 7, 5147–5151 (2015).
[Crossref]

Nat. Mater. (1)

M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, and J. B. Edel, “Self-assembled nanoparticle arrays for multiphase trace analyte detection,” Nat. Mater. 12, 165–171 (2012).
[Crossref]

Nat. Photonics (1)

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012).
[Crossref]

Nature (1)

X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).
[Crossref]

New J. Chem. (1)

L. Guo, X. Zhang, P. Li, R. Han, Y. Liu, X. Han, and B. Zhao, “Surface-enhanced Raman scattering (SERS) as a probe for detection of charge-transfer between TiO2 and CdS nanoparticles,” New J. Chem. 43, 230–237 (2019).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Photon. Res. (1)

Phys. Chem. Chem. Phys. (2)

X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, and B. Zhao, “Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect,” Phys. Chem. Chem. Phys. 19, 11212–11219 (2017).
[Crossref]

Y. Wang, W. Ji, Z. Yu, R. Li, X. Wang, W. Song, W. Ruan, B. Zhao, and Y. Ozaki, “Contribution of hydrogen bonding to charge-transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid,” Phys. Chem. Chem. Phys. 16, 3153–3161 (2014).
[Crossref]

Plasmonics (1)

J. Zhang, M. Irannejad, and B. Cui, “Bowtie nanoantenna with single-digit nanometer gap for surface-enhanced Raman scattering (SERS),” Plasmonics 10, 831–837 (2014).
[Crossref]

RSC Adv. (1)

J. W. Xu, C. W. Wang, Z. Rong, X. A. Cheng, and R. Xiao, “A graphene-interlayered magnetic composite as a multifunctional SERS substrate,” RSC Adv. 5, 62101–62109 (2015).
[Crossref]

Sci. Rep. (3)

W. Wang, J. Zhang, X. Che, and G. Qin, “Large absorption enhancement in ultrathin solar cells patterned by metallic nanocavity arrays,” Sci. Rep. 6, 34219 (2016).
[Crossref]

L. H. Lin and Y. B. Zheng, “Optimizing plasmonic nanoantennas via coordinated multiple coupling,” Sci. Rep. 5, 14788 (2015).
[Crossref]

Y. K. Zhao, F. Yun, Y. Huang, S. Wang, L. G. Feng, Y. F. Li, M. F. Guo, W. Ding, and Y. Zhang, “Metamaterial study of quasi-three-dimensional bowtie nanoantennas at visible wavelengths,” Sci. Rep. 7, 41966 (2017).
[Crossref]

Sens. Actuators B (1)

D. Joseph, Y. S. Huh, and Y. K. Han, “A top-down chemical approach to tuning the morphology and plasmon resonance of spiky nanostars for enriched SERS-based chemical sensing,” Sens. Actuators B 288, 120–126 (2019).
[Crossref]

Solid State Ionics (1)

W. Zhang, L. Zhang, Z. Hui, X. Zhang, and Y. Qian, “Synthesis of nanocrystalline Ag2S in aqueous solution,” Solid State Ionics 130, 111–114 (2000).
[Crossref]

Other (3)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, 2005).

E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1991).

B. Wang, S. C. Singh, H. Y. Lu, and C. L. Guo, “Design of aluminum bowtie nanoantenna array with geometrical control to tune LSPR from UV to near-IR for optical sensing,” Plasmonics (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Characterization of Ag2S QDs. (a) TEM image of Ag2S QDs (scale bar 20 nm). Inset shows an HRTEM image of a QD with a lattice spacing of 0.241 nm (scale bar 1 nm). (b) Histogram for the size distribution of Ag2S QDs with average size of 3.32 nm. (c) XRD spectrum of the Ag2S QDs with JCPDS data. (d) UV-vis-NIR absorption spectra of the Ag2S QDs.
Fig. 2.
Fig. 2. Characterization of Au BNA arrays. (a) SEM images of the BNA arrays (scale bar 2 μm). Inset shows an enlarged view of three pairs of BNA (scale bar 300 nm). (b) EDS analysis of Ag2S QDs on BNA arrays. On the top, from left to right: (i) scanned region for EDS, and elemental mapping of (ii) S, (iii) Ag, and (iv) Au. Inset shows the elemental composition of different elements in BNA arrays/Ag2S-QDs substrate.
Fig. 3.
Fig. 3. Schematics and calculated E-field distribution of Au BNA arrays. (a) Geometrical parameters of BNA arrays with MIM structure. (b) E-field enhancement of the BNA arrays at P0 point. Inset shows the enlarged E-field enhancement spectrum range from 780 to 930 nm. (c)–(e) E-field distribution (|E|2/|E0|2) in xy plane at three LSPR modes.
Fig. 4.
Fig. 4. Raman spectra of PATP molecules adsorbed on a different substrate. (a)–(c) Raman spectra of PATP molecules adsorbed on Ag2S QDs coated BNA arrays (red curve), BNA arrays (black curve), and Ag2S QDs (blue curve), respectively. (d) Raman spectrum of PATP powder as reference. The spectra were collected under 785 nm laser excitation. Raman spectra are shifted compared to each other along the y axis for better viewing.
Fig. 5.
Fig. 5. Raman spectra of PATP molecules adsorbed on Au film and BNA substrates and the spatial E-field distribution of the BNA. (a) Raman spectra of the PATP molecules adsorbed on the BNA arrays (red curve) and 30 nm Au film (blue curve) under 785 nm laser excitation. (b), (c) Spatial E-field distribution (|E|2/|E0|2) of the BNA in the xy and xz planes under 785 nm laser excitation, respectively. (d), (e) Spatial distribution of E-field EF corresponding to 1078  cm1 (or 857 nm) and 1140  cm1 (or 862 nm) vibrational modes of PATP in the xy plane and xz plane, respectively. In the plots (d) and (e), the white dashed lines represent the BNA for the SERS E-field EF calculation; the excitation wavelength was considered as 785 nm. Raman spectra are shifted compared to each other along the y axis for better viewing.
Fig. 6.
Fig. 6. Energy level diagram of (a) Ag2S-QDs/PATP, (b) Au-BNA/PATP, and (c) BNA/Ag2S-QDs/PATP systems under 785 nm laser excitation, respectively.
Fig. 7.
Fig. 7. Raman spectra and degree of charge transfer of different composite systems. (a) Raman spectra of the PATP molecule adsorbed on Ag2S QDs coated BNA arrays (red curve) and Ag2S QDs coated Au thin film (30 nm) (blue curve). (b) Degree of charge transfer (ρCT) of the PATP adsorbed on Ag2S coated Au film and Ag2S coated BNA arrays at b2 modes with excitation at 785 nm. Raman spectra are shifted compared to each other along the y axis for better viewing. Error bars represent [mean±SD, (n=5)].
Fig. 8.
Fig. 8. SERS spectra and E-field distribution with polarization angles. SERS spectra of PATP adsorbed onto (a) BNA arrays and (b) Ag2S coated BNA arrays with different polarization angles under 785 excitation, respectively. Insets show the directions of θpola=0° and θpola=90°, and the polarization angle changes in the counterclockwise direction. (c) SERS intensity at 1078  cm1 [ν(CS), a1] in BNA/PATP system, 1075  cm1 [ν(CS), a1] and 1138  cm1 [δ(CH), b2] in BNA/QDs/PATP system with different polarization angles. (d) Degree of charge transfer (ρCT) at 1138  cm1 in BNA/Ag2S/PATP system with different polarization angles. Spatial E-field distribution of BNA arrays in the (e) xy plane and(f) xz plane with different polarization angles under 785 excitation, respectively. Raman spectra are shifted compared to each other along the y axis for better viewing. Error bars represent [mean±SD, (n=5)].
Fig. 9.
Fig. 9. XPS characterization of Ag2S QDs. (a), (b) Overall and Ag 3d of Ag2S coated BNA arrays, respectively. (c), (d) S 2p of Ag2S coated BNA arrays with and without PATP molecule, respectively.
Fig. 10.
Fig. 10. Calculated distribution of E-field under three modes. (a)–(c) Spatial E-field distribution at a wavelength of 802 nm (LSPR1), 726 nm (LSPR2), and 686 nm (LSPR3) in the xz plane, respectively. (d)–(f) The line distribution of E-field enhancement at 802 nm (LSPR1 mode) along x, y, and z direction, respectively. Inset figures show the assumed direction of x, y, and range of height (h).
Fig. 11.
Fig. 11. Calculation of enhancement factor in the BNA/Ag2S-QDs/PATP system under 785 nm laser excitation. (a) Depth-dependent Raman intensity of the single Si wafer at the 520.7  cm1 band under 785 nm laser excitation. A pinhole size of 100 μm and a 100× working-length objective is used. (b) Raman spectra of PATP powder and PATP with BNA/Ag2S-QDs composite substrate. (c) Raman spectra of PATP powder, and PATP with BNA and Au/Ag2S-QDs composite substrate. (d) Raman intensity of bands at 1075  cm1 (a1) and 1138  cm1 (b2) in BNA/Ag2S-QDs/PATP, BNA/PATP, and Au/Ag2S-QDs/PATP systems. Raman spectra are shifted compared to each other along the y axis for better viewing. Error bars represent [mean±SD, (n=5)].
Fig. 12.
Fig. 12. Mapping of SERS spectrum and E-field distribution. (a) Camera view of scanning area (left side) and mapping of SERS spectrum at 1138  cm1 corresponding to the scanning area (right side). (b) Spatial E-field distribution (|E|2/|E0|2) of BNA arrays under 785 nm excitation.
Fig. 13.
Fig. 13. Raman spectra of PATP molecule adsorbed on different substrates. (a) Comparison of Raman spectra of PATP molecule adsorbed on the Ag2S QDs under 473 and 532 nm laser excitation. (b), (c) Raman spectra of PATP molecule adsorbed on BNA, Ag2S QDs, and Ag2S QDs coated BNA under 473 and 532 nm laser excitation, respectively. (d) Comparison of Raman spectra of PATP molecule adsorbed on Ag2S QDs coated BNA arrays under 473 and 532 nm laser excitation. (e), (f) Degree of charge transfer (ρCT) of PATP absorbed on Ag2S QDs and Ag2S QDs coated BNA arrays substrate at b2 modes with excitation at 473 and 532 nm, respectively. Raman spectra are shifted compared to each other along the y axis for better viewing. Error bars represent [mean±SD, (n=5)].

Tables (1)

Tables Icon

Table 1. Raman Peak Assignment in the SERS Spectrum of the PATP-Modified SERS Substrate

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ρCT(κ)=Iκ(CT)Iκ(SPR)Iκ(CT)+I0(SPR),
EF=ISERSIbulkNbulkNSERS,
Nbulk=ρ0π(r)2hNAM,
NSERS=π(r)2σ0.
h=I(z)dzImax,
NbulkNSERS=ρ0hNAσ0M.

Metrics